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Preface 

Modern applications are both data and computationally intensive and require 
the storage and manipulation of voluminous traditional (alphanumeric) and 
non-traditional data sets, such as images, text, geometric objects, time-series, 
audio, video. Examples of such emerging application domains are: geograph­
ical information systems (GIS), multimedia information systems, CAD/CAM, 
time-series analysis, medical information systems, on-line analytical process­
ing (OLAP), data mining. These applications pose diverse requirements with 
respect to the information and the operations that need to be supported, and 
therefore from the database perspective, new techniques and tools need to be 
developed towards increased processing efficiency. 

Spatial database management systems aims at supporting queries that involve 
the space characteristics of the underlying data. For example, a spatial database 
may contain polygons that represent building footprints from a satellite image 
or the representation of lakes, rivers and other natural objects. It is important to 
be able to query the database by using predicates that are related to the spatial 
and geometric object characteristics. Examples of such queries are: 

• the range query: given a rectangle R, determine objects in the database that 
intersect R, 

• the nearest neighbor query: given an object O, determine the k objects from 
the database that are closer to O, 

• the spatial join query: given two sets of objects, determine the pairs that 
satisfy a spatial predicate (e.g., intersection, containment), 

• the closest-pair query: given two sets of objects, determine the k pairs that 
have the k smallest distances amongst all possible pairs. 

A spatial database system is enhanced by special tools to handle such queries. 
These tools include new data types, sophisticated data structures and algorithms 

xvii 
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for efficient query processing that differ from tlieir counterparts in a conservative 
alphanumeric database. The contribution of the research community over the 
past twenty years includes a plethora of research works towards this goal. 

Apart from exploiting novel techniques for efficient spatial query processing, 
another direction is to use multiple resources (processors and/or disks) towards 
more efficient processing. If several processors are used to solve a problem, 
the total processing time is likely to be reduced, due to the parallel execution of 
several independent operations. The purpose of this research monograph is to 
study efficient processing techniques for nearest neighbor search, by assuming 
a database point of view. 

Intended Audience 
This book can be used by students, researchers and professionals who are 

interested in nearest neighbor search and related issues. More specifically, the 
book will be a valuable companion for postgraduate students who are studying 
spatial database issues, and for instructors who can use the book as a refer­
ence for specialized topics in nearest neighbor query processing techniques. 
Researchers in several related areas will find this book useful, since it covers 
many important research directions. 

Prerequisites 
Each book chapter is self-contained to help the reader focus on the corre­

sponding issue. Moreover, the partitioning of the chapters in parts will be very 
convenient in focusing in different research issues, according to the reader's 
needs. However, at least a basic knowledge in indexing, query processing and 
optimization in traditional database systems, will be very helpful in understand­
ing more easily the issues covered by each chapter. 

Book Organization 
The content of this monograph is based on research performed by the authors 

in the Data Engineering Lab of the Department of Informatics of Aristotle Uni­
versity during the last years. The material is organized in three parts, composed 
of nine chapters in total, covering different issues related to nearest neighbor 
search. 

In Part I we cover fundamental issues regarding spatial databases. This 
part is composed of three chapters. Chapter 1 performs a gentle introduction 
to spatial database concepts, by discussing issues related to query processing, 
indexing and handling multidimensional datasets. In Chapter 2 we focus on the 
R-tree family of spatial access methods, and discuss issues related to indexing 
spatial objects. Several important R-tree variations are also briefly presented. 
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Part II is composed of three chapters. Chapter 3 discusses in detail nearest 
neighbor query processing in R-trees, applications of nearest neighbor search 
and some important issues regarding nearest neighbor search in multimedia 
database systems. In Chapter 4 we study the issue of cost estimation in nearest 
neighbor queries using fractal concepts. Finally, Chapter 5 studies nearest 
neighbor queries in spatiotemporal databases, and more specifically in moving 
objects databases. Querying moving objects poses new challenges since the 
answer to a query change over time, due to the continuous object movement. 

Part III covers parallel and distributed processing of nearest neighbor queries. 
Chapter 6 gives the appropriate background in parallel and distributed databases, 
and discusses several important issues. Chapter 7 studies the problem of near­
est neighbor query processing in a single-processor multidisk system. In such a 
system the dataset is declustered among all disks and therefore several disk ac­
cess operations can be performed in parallel, reducing the query response time. 
Algorithms are presented and experimental results are given demonstrating the 
performance efficiency. Chapter 8 studies nearest neighbor query processing 
in a system composed of many disks and many processors. The dataset and the 
corresponding access method are declustered among a number of computers. 
The challenge is to provide efficient processing techniques to answer the near­
est neighbor query by exploiting parallelism. Chapter 9 studies the problem 
in a similar environment, by allowing each computer to manage its own local 
database independently from the others. 

In the Epilogue we give a brief summary of the book and raise some important 
issues for further research in the area. 

APOSTOLOS N . PAPADOPOULOS 

YANNIS MANOLOPOULOS 
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Chapter 1 

SPATIAL DATABASE CONCEPTS 

1. Introduction 
Modem applications are both data and computationally intensive and require 

the storage and manipulation of voluminous traditional (alphanumeric) and non-
traditional data sets, such as images, text, geometric objects, time series, audio, 
video. Examples of such emerging application domains are: geographical in­
formation systems (GIS), multimedia information systems, time-series analysis, 
medical information systems, on-line analytical processing (OLAP) and data 
mining. These applications impose diverse requirements with respect to the 
information and the operations that need to be supported. Therefore from the 
database perspective, new techniques and tools need to be developed towards 
increased processing efficiency. 

The exploitation of a DBMS towards efficient support of such applications 
is being considered mandatory to provide fast access and high data availability. 
However, since traditional DBMSs can not easily support such applications, 
new or modified components are needed. Faster storage managers should be 
developed; the query processor and the query optimizer must take into consid­
eration the new data types; the transaction processor must be enhanced with 
special features to cope with the load posed by users, towards response time 
reduction and throughput increase. 

The main goal of a spatial database system is the effective and efficient 
handling of spatial data types in two, three or higher dimensional spaces, and 
the ability to answer queries taking into consideration the spatial data properties. 
Examples of spatial data types are: 

• point: characterized by a pair of (x,y) values, 

• line segment: characterized by a pair of points. 
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• rectangle: characterized by its lower-left and upper-right comers, 

• polygon: comprised by a set of points, defining its comers. 

Figure 1.1 represents examples of spatial datasets. In Figure 1.1(a) the Eu­
ropean countries are represented as polygons, whereas in Figure 1.1(b) a GIS 
map is shown which contains information about a specific geographic area of 
Northern Greece. 

/ ' -.fV ••./ / 

• - . . • • > • > • V - . • • •• 

" * • -/' v • • r:... , . . . 

(a) the European countries (b) a map example 

Figure 1.1. Examples of spatial datasets. 

2. Spatial Query Processing 
In traditional database systems user queries are usually expressed by SQL 

statements containing conditions among the attributes of the relations (database 
tables). A spatial database system must be equipped with additional function­
ality to answer queries containing conditions among the spatial attributes of 
the database objects, such as location, extend and geometry. The most common 
spatial query types are: 

• topological queries (e.g., find all objects that overlap or cover a given object), 

• directional queries (e.g., find all objects that lie north of a given object), 

• distance queries (e.g., find all objects that lie in less than a given distance 
from a given object). 

The aforementioned spatial operations comprise basic primitives for develop­
ing more complex ones in applications that are based on management of spatial 
data, such as GIS, cartography and many others. Let us examine three queries 
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that are widely used in spatial applications and have been studied thoroughly 
in the literature: 

• range query: is the most common topological query. A query area R is 
given and all objects that intersect or are contained in R are requested. 

• nearest neighbor (NN) query: is the most common distance query. Given a 
query point P and a positive integer k, the query returns the k objects that 
are closer to P, based on a distance metric (e.g., Euclidean distance). 

• spatial join query: is used to determine pairs of spatial objects that satisfy a 
particular property. Given two spatial datasets DA and DB and a predicate 
0, the output of the spatial join query is a set of pairs Oa,Oh such that 
Oa e DA, Ob e DB and 0{Oa, Ob) is true. 

• closest-pair query: is a combination of spatial join and nearest neighbor 
queries. Given two spatial datasets DA and DB, the output of a fc closest-
pairs query is composed of k pairs Oa,Ob such that Oa G DA, Ob G DB-
These k pair-wise distances are the smallest amongst all possible object 
pairs. 

Figure 1.2 presents examples of range and NN queries for a database con­
sisting of points in 2-d space. In Figure 1.2(a) the answer to the range query is 
comprised by the three data points that are enclosed by R. In Figure 1.2(b) the 
answer to the NN query is composed of the five data points that are closer to P. 

O 
O o 
o o 

o 

® 

o o 
o 

o 
o 
o o 

o 

o 

(a) rectangular range query 
O 

(b) nearest-neighbor query for k=5 

Figure 1.2. Examples of range and NN queries in 2-d space. 

Figure 1.3 gives two examples of spatial join queries. In Figure 1.3(a) the 
query asks for all intersecting pairs of the two datasets (intersection spatial 
join), whereas in Figure 1.3(b) the query asks for all pairs Oa, Ob such that Ob 
is totally enclosed by Oa (containment spatial join). 

A spatial DBMS must efficiently support spatial queries. Towards this goal, 
the system must be able to select an efficient query execution plan (QEP) for 
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81 
A1 

B2 

A2 

Spatial join for intersection 
Result: {{A1,B1), (A1,B2), (A2,B1)} 

(a) 

A1 
81 

Ba 

84 

B3 { 
1 

L J 
A2 

Spatial join for containment 
Result: {(A2,B2), (A2,B3)} 

(b) 

Figure 1.3. Examples of spatial join queries. 

a complex spatial query. Determining the best execution plan for a spatial 
query requires tools for measuring (more precisely, estimating) the number of 
(spatial) data items that are retrieved by a query as well as its cost, in terms of 
I/O and CPU effort. As in traditional query optimization, such tools include 
cost-based optimization models, exploiting analytical formulae for selectivity 
(the hit percentage) and cost of a query, as well as histogram-based techniques. 

In this book we focus on methods and techniques for the processing of NN 
queries. As we show later, NN queries play an important role not only in 
spatial database systems but in multimedia database systems as well, because 
they allow the retrieval of similar objects according to a distance metric. 

3. Access Methods 
The processing of spatial queries presents significant requirements, due to the 

large volumes of spatial data and the complexity of both objects and queries [85]. 
Efficient processing of spatial queries capitalize on the proximity of the objects 
to focus the searching on objects that satisfy the queries and eliminate the 
irrelevant ones. The target is to avoid the sequential scanning of the database 
which is an extremely costly operation. 

In traditional database systems, access methods like B-trees and hashing 
offer considerable improvements in query response time in comparison to the 
sequential database scanning. Similarly, spatial access methods (SAMs) pro­
vide an efficient way of organizing the data and processing spatial queries. In 
several textbooks and research reports there is a differentiation between point 
access methods (PAMs), used to manipulate points, and spatial access methods 
(SAMs) used to manipulate arbitrary spatial objects. In this book we use the 
term SAM for both. Several spatial access methods have been proposed in the 
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literature, with different characteristics and performance. Most of the proposed 
techniques are based on hierarchical (tree-like) structures and offer efficient 
processing to specific types of queries. 

Most of the spatial access methods organize the underlying data based on 
object approximation . Therefore, complex spatial objects are approximated 
by simpler ones to support efficient indexing. The most common spatial ap­
proximation is the minimum bounding rectangle (MBR for short), which is 
the minimum rectangle that encloses the detailed object geometry. Figure 1.4 
presents a set of polygons and their corresponding MBRs. 

Figure 1.4. A set of polygons and their corresponding MBRs. 

The majority of the access methods are used in conjunction with the filter-
refinement processing paradigm. More specifically, to process a query a two-
step procedure is followed, comprised by the following phases: 

1 filter phase: this phase determines the collection of all objects whose MBRs 
satisfy the given query. Since we can not yet determine if these objects 
satisfy the query, they form the candidate set. 

2 refinement phase: the actual geometry of each member of the candidate set 
is examined to eliminate false alarms and to find the answer to the query. 

The two processing phases are illustrated in Figure 1.5. The filtering phase 
should be fast and determine the candidates based on the objects' approxima­
tions. Since the processing at this stage is performed by means of approxi­
mations (e.g., MBRs) the candidate set may contain some false alarms. Two 
simple examples of intersection and containment queries are given in Figure 
1.6. If two MBRs intersect each other, this is not necessarily true for the under­
lying objects (Figure 1.6(a)). Also, if an MBR is totally enclosed by another 
MBR, then we can not safely judge about the containment of the underlying 
objects (Figure 1.6(b)). 

Although in general the filter step cannot determine the inclusion of an object 
in the query result, there are few operators (mostly directional ones) that allow 
for finding query results from the filter step. This is shown in Figure 1.5 by 
the existence of hits (i.e., answers to the query) in the filter step. The use of a 
spatial access method provides fast processing of the filter step to discard data 
objects that can not contribute to the query result. 
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(1) 
filter step 

(2) 
refinement step 

Figure 1.5. Filter-refinement query processing. 

1R2 

(a) intersection test (b) containment test 

Figure 1.6. Intersection and containment queries. 

Among the significant number of spatial access methods that have been 
proposed in the literature, the R-tree [36] became very popular because of its 
simplicity, its good average performance and its ability to handle efficiently 
higher-dimensional data (up to 20 dimensions). R-trees were proposed to solve 
the indexing problem of rectangles in VLSI design. However, subsequent im­
provements and enhancements of the basic R-tree structure helped researchers 
to apply the R-tree successfully in other fields as well (e.g., GIS, multimedia 
databases). Due to their importance and their wide acceptance, R-trees are 
presented separately in detail in the next chapter. 

4. Handling High-Dimensional Data 
In spatial applications data are usually based on two or three dimensions. 

However, many applications (e.g., multimedia) assume that data are multidi­
mensional, embedded in more dimensions. For example, using the GEMINI 
approach [28] for indexing multimedia data a time sequence (or time series) can 
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be represented as an A^-dimensional vector where A'' is the number of Discrete 
Fourier Transform (DFT) coefficients. An example is given in Figure 1.7. 

Figure 1.7. Mapping time series to multidimensional vectors. 

By using suitable transformations, this technique has been successfully ap­
plied for other data types as well (e.g., audio, color images, video). In order to 
organize these multidimensional vectors a spatial access method can be used. 
Therefore, we see that even if the original data are not spatial in nature, spatial 
access methods can still be effectively utilized to organize and efficiently query 
these datasets. 

It has been observed that for very high dimensionalities, most hierarchical 
spatial access methods degenerate. The reason for this degeneration is twofold: 

1 By increasing space dimensionality more space is required to store a single 
vector, and therefore the index fanout (number of children per node) is 
reduced considerably resulting in disk accesses increase, and 

2 The good properties of index structures do longer hold, since dimensionality 
increase results in excessive overlap of intermediate nodes, and therefore 
the discrimination power of the structure is decreased considerably. 

Therefore, specialized access methods have been developed to attack the 
dimensionality curse problem. Among the plethora of the proposed multidime-
sional access methods we note the TV-tree [63], the X-tree [13]. Some of the 
ideas for NN query processing presented in this book are also applicable to 
these methods along with the corresponding modifications. 

5. Spatial Data Support in Commercial Systems 
The support of complex data types (non alphanumeric) and access methods 

is a key issue in modem database industry, since it allows the DBMS to extend 
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its functionality beyond pure relational data handling. The database industry 
has performed some very significant steps towards spatial data and spatial query 
processing support. Among these efforts we highlight the following: 

• Mapinfo SpatialWare: SpatialWare extends an Informix, Microsoft SQL 
Server, IBM DB2 or Oracle database to handle spatial data such as points, 
lines and polygons. It extends database capabilities avoiding a middleware 
architecture. All functionality is contained directly into the DBMS environ­
ment. SpatialWare is implemented in the following ways: 1) in Informix as 
a datablade, 2) in SQL Server using the extended stored procedure mecha­
nism, 3) in IBM DB2 as an extender, and 4) in Oracle as spatial server. Spa­
tialWare provides R-tree support for spatial data indexing purposes [74,75]. 

• Oracle: Oracle Locator, which is a feature of Oracle Intermedia, provides 
support for location-based queries in Oracle 9i DBMS. Geographic and 
location data are integrated in the Oracle 9i server, just like ordinary data 
types like CHAR and INTEGER. Oracle Spatial provides location-based 
facilities allowing the extension of Oracle-based applications. It provides 
data manipulation tools for accessing location information such as road 
networks, wireless service boundaries, and geocoded customer addresses. 
Both Oracle Locator and Oracle Spatial provide support for linear quadtrees 
and R-trees for spatial data indexing purposes [57, 84]. 

• IBM Informix and DB2: In Informix, the R-tree is built-in the database 
kernel and works directly with the extended spatial data types. The Informix 
R-tree implementation supports full transaction management, concurrency 
control, recovery and parallelism. A detailed description of the Informix 
R-tree implementation can be found in [43]. A description of spatial data 
handling in a DB2 database can be found in [3]. 

6. Summary 
In order to support applications that require the manipulation of spatial data, 

the DBMS must be enhanced with additional capabilities regarding data repre­
sentation, organization, query processing and optimization. 

Due to the complexity and volume of spatial datasets, access methods are 
required to guarantee acceptable query processing performance. Usually, spa­
tial access methods work on object approximation instead of the detailed object 
spatial characteristics. The most common object approximation is the minimum 
bounding rectangle (MBR). The use of object approximation is twofold: 

1 it helps in discarding a large number of objects without the need for a 
thorough examination of the detailed spatial characteristics, and 
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2 it enables the development of efficient and effective access methods. By 
means of the filter-refinement processing mechanism efficient spatial query 
processors can be developed. 

Taking into consideration that objects in diverse application domains can 
be modeled as multidimensional points, spatial access methods can be applied 
in such cases as well. The problem is that with the increase of the space 
dimensionality, severe problems arise, collectively known as the dimensionality 
curse. Specialized access methods have been proposed to attack this problem. 

Due to the importance of spatial data, several commercial systems have 
already enhanced their products with spatial data manipulation capabilities, 
enabling the support of geographical information systems and related applica­
tions. 

7. Further Reading 
There are numerous textbooks and monographs that present in detail spa­

tial access methods and spatial query processing. The two books of Samet 
[111,112] study in detail spatial access methods and their various applications. 
Laurini and Thomson in [59] cover several issues regarding spatial access meth­
ods and query processing giving emphasis to Geographical Information Sys­
tems. Databases issues in Geographical Information Systems are covered in 
[2]. In [104], Rigaux, SchoU and Voisard perform a thorough study of spa­
tial databases, and cover many important aspects of spatial database systems 
including modeling, spatial query languages, and query processing. Spatial 
databases are also covered in detail in a recent book by Shekhar and Chawla 
[119]. 

Two very significant introductory research papers for spatial databases have 
been written by Gueting [35] and Paradaens [98]. Due to the fact that spatial 
joins and closest-pairs queries are both I/O and CPU intensive, there are many 
important contributions in the literature [16, 22, 23, 24, 25, 42, 64, 65, 69, 88, 
97]. 

With respect to relevant research papers, one should notice that there is a sig­
nificant number of sources. For example, all major conferences on databases, 
such as SIGMOD, VLDB, ICDE, PODS, EDBT and others, have special ses­
sions on the above topics. In addition, there are other more focused conferences, 
such ACM-GIS, SSD/SSTD, SSDBM, SSTDB and others, where these issues 
are traditionally discussed. 



Chapter 2 

THE R-TREE AND VARIATIONS 

1. Introduction 
In this chapter, we briefly present the R-tree family of spatial access methods, 

which has been used extensively in research and industry. In fact, many com­
mercial database vendors have adopted the R-tree as a spatial access method to 
handle spatial objects in their DBMSs. 

Since its first application in VLSI design [36], the R-tree has become one of 
the most popular spatial access methods, and it has been successfully applied 
to many application domains (e.g., GIS, multimedia databases). Section 2 
describes the original R-tree structure. Sections 3 and 4 study briefly dynamic 
and static R-tree variations. Some performance issues are covered in Section 
5, whereas in Section 6 we discuss the adaptation of the structure in emerging 
applications. 

2. The Original R-tree 
Although, nowadays the original R-tree is being described in many standard 

textbooks and monographs on databases [59,72, H I , 112], we briefly recall its 
basic properties to make this book self-contained. The R-tree is a hierarchical 
data structure based on the B^-tree [52], and it has been proposed as a disk-based 
access method to organize rectangles. It is used for the dynamic organization 
of a set of d-dimensional geometric objects representing them by the minimum 
bounding d-dimensional rectangles (MBRs). Each R-tree node corresponds to 
the minimum MBR that bounds its children. The tree leaves contain pointers 
to the database objects, instead of pointers to children nodes. The R-tree nodes 
are implemented as disk pages. 

It must be noted that the MBRs that correspond to different nodes may be 
overlapping. Besides, an MBR can be included (in the geometrical sense) in 
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many nodes, but can be associated to only one of them. This means that a 
spatial search may visit many nodes, before confirming the existence or not of 
a given object MBR. The R-tree has the following fundamental characteristics: 

• leaf nodes reside on the same level. 

• each leaf contains pairs of the form {R, O), such that R is the MBR that 
contains spatially object O, 

• every internal node contains pairs of the form (i?, P), vv'here P is a pointer 
to a child of the node and R is the MBR that contains spatially the MBRs 
contained in this child, 

• every node (with the possible exception of the root) of an R-tree of class 
(m, M) contains between m and M pairs, where m < [M/2] , 

• the root contains at least two pairs, if it is not a leaf. 

Figure 2.1 depicts some objects on the left and an example R-tree on the 
right. Data rectangles R\ through RQ are stored in leaf nodes, whereas MBRs 
Ra, Rb and Re are hosted at the upper level. 

R3 

R8 

R5 

IR6 

Ra Rb RG 

R1 R2 R3 R4 R5 R6 R 7 R8 R9 

Figure 2.1. An R-tree example. 

Insertions of new objects are directed to leaf nodes. At each level, the node 
that will be least enlarged is chosen. Thus, finally the object is inserted in an 
existing leaf if there is adequate space, otherwise a split takes place. Adopting 
as driving criterion the minimization of the sum of the areas of the two resulting 
nodes, Guttman proposed three alternative algorithms to handle splits, which 
are of linear, quadratic and exponential complexity: 

• linear split: Choose two objects as seeds for the two nodes, where these 
objects are as furthest as possible. Then, consider each remaining object in 
a random order and assign it to the node requiring the smaller enlargement 
of its respective MBR. 
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• quadratic split: Choose two objects as seeds for the two nodes, where these 
objects if put together create as much empty space as possible (empty space 
is the space that remains from the MBR if the areas of the two objects are 
ignored). Then, until there are no remaining objects, choose for insertion 
the object for which the difference of empty space if assigned to each of 
the two nodes is maximized, and insert it in the node that requires smaller 
enlargement of its respective MBR. 

• exponential split: All possible groupings are exhaustively tested and the 
best is chosen with respect to the minimization of the MBR enlargement. 

Guttman suggested using the quadratic algorithm as a good compromise be­
tween complexity and search efficiency. 

In all R-tree variants that have appeared in the literature, tree traversals for 
any kind of operations are executed in exactly the same way as in the original R-
tree. Basically, the R-tree variations differ in the way they handle insertions, and 
splits during insertions by considering different minimization criteria instead 
of the sum of the areas of the two resulting nodes. In the sequel, we present the 
most important dynamic and static R-tree variants. 

3. Dynamic R-tree Variants 
Here we examine some of the most important dynamic R-tree variants. The 

methods are characterized dynamic since they effectively handle insertions and 
deletions of data. In the next section we briefly discuss some fundamental static 
R-tree variations, where the data objects must be known in advance. 

3,1 The R+-tree 
The R^-tree was proposed as a structure that avoids visiting multiple paths 

during point queries and, thus, the retrieval performance could be improved 
[115, 127]. This is achieved by using the clipping technique. This means that 
the R+'tree does not allow overlapping of MBRS at the same tree level. In turn, 
to achieve this, inserted objects have to be divided in two or more parts, which 
means that a specific object's entries may be duplicated and redundantly stored 
in various nodes. Therefore, this redundancy works in the opposite direction 
of decreasing the retrieval performance in case of window queries. However, 
the absence of overlap between MBRs in internal nodes improves the overall 
performance of the structure. 

Another side effect of clipping is that during insertions, an MBR augmenta­
tion may lead to a series of update operations in a chain-reaction type. Also, 
under certain circumstances, the structure may lead to a deadlock, as, for exam­
ple, when a split has to take place at a node with M+1 rectangles, where every 
rectangle encloses a smaller one. An R'^-tree for the same dataset illustrated in 
Figure 2.1, is presented in Figure 2.2. 
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Figure 2.2. An R"*"-tree example. 

3.2 The R*-tree 
Although proposed in 1990 [7], R*-trees are still very well received and 

widely accepted in the literature as a prevailing performance-wise structure 
that is often used as a basis for performance comparisons. 

The R*-tree does not obey the limitation for the number of pairs per node and 
follows a sophisticated node split technique. More specifically, the technique 
of forced reinsertion is applied, according to which, when a node overflows, p 
entries are extracted and reinserted in the tree (p being a parameter, with 30% 
a suggested optimal value). 

Other novel features of R* -trees is that it takes into account additional criteria 
except the minimization of the sum of the areas of the produced MBRs. These 
criteria are the minimization of the overlapping between MBRs at the same 
level, as well as the minimization of the perimeter of the produced MBRs. 

Conclusively, the R*-tree insertion algorithm is quite improving in com­
parison to that of the original R-tree and, thus, improves the latter structure 
considerably as far as retrievals are concerned (up to 50%). Evidently, the 
insertion operation is not for free as it is CPU demanding since it applies a 
plane-sweep algorithm [101]. 

3.3 The Hilbert R-tree 
The Hilbert R-tree is a hybrid structure based on R-trees and B+-trees [50]. 

Actually, it is a B^-tree with geometrical objects being characterized by the 
Hilbert value of their centroid. Thus, leaves and internal nodes are augmented 
by the largest Hilbert value of their contained objects or their descendants, 
respectively. 

The Hilbert curve is a space-filling curve, which can be used to map multidi­
mensional points to the one-dimensional space, by trying to preserve proximity 
as much as possible. It is desirable, two points close in space to have nearby 
values, and vice-versa. Other well-known space filling curves are the column­
wise curve, the row-wise curve and the Peano curve. Among them it has been 
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shown that the Hilbert curve offers the best performance with respect to prox­
imity preservation [45]. Some space-filling curve examples for the 2-d space 
are illustrated in Figure 2.3. 

0 O—© 
(a) column-wise curve (b) Peano curve 

Figure 2.3. Examples of space-filling curves in 2-d space. 

©—O ©—® 
{c) Hilbert curve 

For an insertion of a new object, at each level the Hilbert values of the 
alternative nodes are checked and the smallest one that is larger than the Hilbert 
value of the object under insertion is followed. In addition, another heuristic 
used in case of overilow by Hilbert R-trees is the redistribution of objects in 
sibling nodes. In other words, in such a case up to s siblings are checked to 
find available space and absorb the new object. A split takes place only if all 
s siblings are full and, thus, s+1 nodes are produced. This heuristic is similar 
to that applied in B*-trees, where redistribution and 2-to-3 splits are performed 
during node overflows [52]. According to the authors' experimentation, Hilbert 
R-trees were proven to be overall the best dynamic version of R-trees as of the 
time of publication. However, this variant is vulnerable performance-wise to 
large objects. 

4. Static R-tree Variants 
There are common applications that use static data. For instance, inser­

tions and deletions in census, cartographic and environmental databases are 
rare or even they are not performed at all. For such applications, special at­
tention should be paid to construct an optimal structure with regards to some 
tree characteristics, such as storage overhead minimization, storage utiliza­
tion maximization, minimization of overlap or cover between tree nodes, or 
combinations of the above. Therefore, it is anticipated that query processing 
performance will be improved. These methods are well known in the literature 
as packing or bulk loading. 
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4.1 The Packed R-tree 
The first packing algorithm was proposed by Roussopoulos and Leifker in 

1985, soon after the proposal of the original R-tree [107]. This first effort 
basically suggests ordering the objects according to some spatial criterion (e.g., 
according to ascending x-coordinate) and then grouping them in leaf pages. No 
experimental work is presented to compare the performance of this method to 
that of the original R-tree. However, based on this simple inspiration a number 
of other efforts have been proposed later in the literature. 

4.2 The Hilbert Packed R-tree 
Kamel and Faloutsos proposed an elaborated method to construct a static 

R-tree with 100% storage utilization [49]. In particular, among other heuristics 
they proposed sorting the objects according to the Hilbert value of their centroids 
and then build the tree in a bottom-up manner. 

Experiments showed that the latter method achieves significantly better per­
formance than the original R-tree with quadratic split, the R* -tree and the Packed 
R-tree by Roussopoulos and Leifker in point and window queries. Moreover, 
Kamel and Faloutsos proposed a formula to estimate the average number of 
node access, which is independent of the details of the R-tree maintenance 
algorithms and can be applied to any R-tree variant. 

4.3 The STR Packed R-tree 
STR (Sort-Tile-Recursive) is a bulk-loading algorithm for R-trees proposed 

by Leutenegger et al. in [61]. Let iV be a number of rectangles in two-
dimensional space. The basic idea of the method is to tile the address space by 
using S vertical slices, so that each slice contains enough rectangles to create 
approximately yjNjC nodes, where C is the R-tree node capacity. 

Initially, the number of leaf nodes is determined, which v&L— \NIC'\. Let 
S = \fL. The rectangles are sorted with respect to the x coordinate of the 
centroids, and S slices are created. Each slice contains S • C rectangles, which 
are consecutive in the sorted list. In each slice, the objects are sorted by the y 
coordinate of the centroids and are packed into nodes (placing C objects in a 
node). The method is applied until all R-tree levels are formulated. 

The STR method is easily applicable to high dimensionalities. Experimental 
evaluation performed in [61] has demonstrated that the STR method is generally 
better than previously proposed bulk-loading methods. However, in some cases 
the Hilbert packing approach performs marginally better. 

5. Performance Issues 
The R-tree and its variations has been successfully applied for range queries, 

NN queries and spatial join queries. Since all the aforementioned R-tree vari-
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ations have similar hierarchical structures, the query processing techniques are 
applied without any modification. An exception is the R+-tree, which uses mul­
tiple occurrences of the same object to avoid MBR overlap of the intermediate 
tree nodes, and therefore duplicate elimination must be applied. 

Static variants are generally more efficient than dynamic ones, because the 
tree structure is more compact, contains fewer nodes and MBR overlap is re­
duced in comparison to the dynamic case. Since the dataset is known in advance, 
more effective placement of MBRs to nodes is performed in a static R-tree. In 
Figure 2.4 the MBRs of the leaf nodes are shown, for three different R-tree vari­
ants, namely the R-tree, the R*-tree and the STR packed R-tree. The dataset 
used for construction is the hydrography dataset of the Connecticut State, taken 
from TIGER [138]. Evidently, the STR packed R-tree generates MBRs with 
less overlap than the other methods. 

(a) R-tree (b) R*-tree (c) STR packed 

Figure 2.4. MBRs of leaf nodes for R-tree, R*-tree and STR packed R-tree. 

Although the R-tree does not guarantee a lower bound with respect to the 
number of disk accesses required, the average performance is very good, as 
many experimental results that appeared in the literature have shown. Moreover, 
the R-tree structure paved the way for the development of efficient spatiotem-
poral access methods, like the 3-d R-tree [137], Historical R-trees [81, 82] and 
the Time-Parameterized R-tree (TPR-tree) [110] which have been proposed for 
spatiotemporal range, NN and join queries. The use of the TPR-tree for NN 
query processing in moving objects is studied in detail in Chapter 5. 

6. R-trees in Emerging Applications 
R-trees have not only been used for storing and processing spatial or spa­

tiotemporal data. Modifications to the R-tree structure have been also proposed 
to speed-up operations in OLAP applications, data warehouses and data mining. 

Variations for OLAP and Data Warehouses store summary information in 
internal nodes, and therefore in many cases it is not necessary to search lower 
tree levels. Examples of such queries are window aggregate queries, where 
dataspace parts that satisfy certain aggregate constraints are requested. Nodes 
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totally contained by the query window do not have to be accessed. One of the 
first efforts in this context is the Ra*-tree variant, which has been proposed for 
efficient processing of window aggregate queries, where summarized data are 
stored in internal nodes in addition to the MBR [46]. The same technique has 
been used in [89] in the case of spatial data warehouses. In [132] the aP-tree 
has been introduced to process aggregate queries on planar point data. Finally, 
in [90] a combination of aggregate R-trees and B-trees has been proposed for 
spatiotemporal data warehouse indexing. 

Recently, R-trees have been also used in the context of data mining. In 
particular. Spatial Data Mining systems [38] include methods that gradually 
refine spatial predicates, based on indexes like the R-tree, to derive spatial 
patterns, e.g., spatial association rules [55]. Nanopoulos et al. [78], based on 
the R-tree structure and the closest-pairs query, developed the C^P algorithm for 
efficient clustering, whereas [79] proposed a density biased sampling algorithm 
from R-trees, which performs effective pre-processing to clustering algorithms. 

7. Summary 
The R-tree structure has been proposed in 1984 by Guttman to efficiently 

manipulate rectangles in VLSI chip design. This work influenced many re­
searchers towards the application of the structure for other purposes as well. 
During the last twenty years many variations of the original structure have been 
proposed to either improve the performance of spatial queries, or to enable 
the application of the structure to different contexts. Among the most widely 
accepted R-tree variants are the R+-tree, the R*-tree and the Hilbert R-tree. 
If the dataset is known in advance, more efficient (static) structures can be 
constructed resulting in considerable performance improvement. The query 
processing capabilities of the structure have been thoroughly studied in the lit­
erature, resulting in efficient algorithms for spatial and spatiotemporal query 
processing. Recently, the structure has been adopted for query processing pur­
poses in emerging application domains such as OLAP, data warehouses and 
data mining. 

8. Further Reading 
In [72] the authors study advanced indexing techniques, including spatial 

and spatiotemporal access methods. An excellent survey on multidimensional 
access methods can be found in [34], where several R-tree variants are studied 
and a very useful classification of access methods is performed. Other access 
methods that are based on the concepts of the R-tree but use different techniques 
to group objects include the SS-tree [142] and the SR-tree [51]. Several access 
methods have been proposed to attack the dimensionality curse problem, such 
as the TV-tree [63], the X-tree [13] and the A-tree [109]. A recent detailed 
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survey for R-trees and variations including query processing techniques can be 
found in [73]. 



II 

NEAREST NEIGHBOR SEARCH IN SPATIAL AND 
SPATIOTEMPORAL DATABASES 



Chapter 3 

NEAREST NEIGHBOR QUERIES 

1. Introduction 

In this chapter we present the NN problem and discuss its applications. 
Although NNN queries have been studied for many different access methods, 
we focus on the R-tree family. The query processing algorithms are also applied 
to other access methods with the appropriate modifications. 

The structure of the chapter has as follows. In the next section we give the ba­
sic definitions of the problem, whereas in Section 3 we discuss its applications. 
Section 4 presents NN query processing in the R-tree access method. Section 
5 discusses important issues of NN search in multimedia database systems. 

2. The Nearest Neighbor Problem 

Assume that the database is composed of A'̂  objects Oi, O2. •••, ON- Given 
a query object Oq (which may be contained in the database or not) the NN 
query asks for the object 0„„ ^ Oq which is closer to Oq than any other object 
in the database. A more general form of the query is to ask for the k nearest 
objects instead of just the closest one. Therefore, the fc-NN query asks for the 
k database objects that are closer to Oq. The output of a fc-NN query is a list of 
objects sorted in increasing distance order from the query object. 

Since the NN query retrieves answers according to the proximity of the 
objects, a distance metric is required. Two of the most common used distance 
metrics are the Euclidean distance (L2), and the Manhattan distance (Li). How­
ever, any Lp norm can be applied, as long as the NN processing algorithm takes 
into consideration the corresponding distance. Given two multidimensional 
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vectors x and y with n dimensions, tlieir Lp distance is defined as follows: 

^ i/p 

Lp{x,y) = \y2i\xj-yj\P 

wliere tiie coordinates of the j-th dimension for x and y respectively. 
Figure 3.1 illustrates examples of 2-NN and 4-NN queries, for a fixed query 
object, using the L2 norm (Euclidean). The database objects and the query 
object are vectors (points) in the 2-d space. 
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(a) nearest-neighbor query for k=2 

0 

(b) 

0 

0 

0 

nearest 

0 

, Q ' J 

© ® 

0 
-neighbor query for fc=4 

Figure 3.1. Examples of 2-NN and 4-NN queries using the L2 norm. 

The similarity between the range query and the NN query is obvious. How­
ever, in a range query we know exactly the maximum possible distance to a 
database object, whereas the number of objects that satisfy the answer is not 
known in advance. On the other hand, in an NN query, we specify the number 
of objects that will be contained in the answer, but the distance to the furthest 
object is not known in advance. 

Based on the above observation, one could think that a /c-NN query could 
be answered by using repetitive range queries. However, the prediction of the 
distance is not straightforward. For example, consider the 2-d dataset depicted 
in Figure 3.2, where we are asking for the three nearest neighbors of point 
P. The target is to determine the three nearest neighbors of P by performing 
range queries. However, as it is shown in Figure 3.2, the first three attempts 
lead to three range queries with radius di, d^ and d^ respectively. Since no 
result is returned, the search distance is increased even more to obtain at least 
three objects. However, the circle with center P and radius d^ contain much 
more than three objects, leading to significant performance degradation. In 
summary, repetitive range queries can lead to either absence of results, or the 
return of excessive objects. Both cases should be avoided, by using more 
efficient algorithms for fc-NN processing. 
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Figure 3.2. Answering a 3-NN query by using repetitive range queries. 

3. Applications 
NN queries are successfully applied to numerous application domains in 

diverse fields. Perhaps the most intuitive use of NN queries is in Geographical 
Information Systems (GIS) where a user may request the five closest cities with 
respect to a location on a map, or the three nearest hospitals from a car accident 
location. These queries are intuitive because the object location contains a clear 
meaning to the user. 

In several application domains, database objects are far more complex and 
rich in content. For example, an image database may contain several thousands 
of color images, and a user may query the database according to some image 
characteristics. Consider the query "retrieve all images that are similar to image 
Q" or the query "retrieve the five images that have similar colors with image 
Q". In the above examples, the user must have a clear meaning of the similarity 
between two images. Similarity in image databases can be expressed by means 
of color, texture, shape or other image characteristics [83]. Similar queries can 
be posed for other multimedia types as well, such as audio and video [68]. 

In the aforementioned applications, NN queries can be applied to determine 
the similarity between database objects. Since complex objects can be trans­
formed to multidimensional vectors, NN processing can be performed on the 
transformed space and then the original space is used to discard false alarms and 
refine the retrieved objects (candidates). An important issue here is the selected 
distance metric that will be used to express the similarity or the dissimilarity of 
objects. Usually, the L2 or the weighted L2 distance give satisfactory results, 
but other metrics could be used according to the physical characteristics of the 
objects. 

Since NN queries are applied to determine similar objects, they are also 
called similarity queries. However, range and join queries can also be applied 
for similarity purposes as well. In a similarity range query we give a query 
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object Q and a distance e and we require all objects that are similar to Q and 
the dissimilarity (distance) is less than e. For example, the query: "retrieve 
all images that are similar to Q, and their dissimilarity with respect to Q is 
less that e" is a similarity range query. The similarity join query is basically 
a join query with the characteristic that the predicate used is related to object 
similarity between two sets of objects. For example, the query: "retrieve all 
pairs of images (x,y) with x E X and y &Y such that the dissimilarity between 
X and y is at most e". 

As long as the objects can be represented as multidimensional vectors there is 
no particular difficulty in NN query processing. However, in some applications, 
objects can not be directly mapped to a multidimensional space, and the only 
information at hand is the pairwise distance between the objects. For example, 
in DNA sequences, the distance between sequence A and sequence B can be 
expressed by means of the edit distance, giving the number of modifications 
required in one sequence to become identical to the other. In such cases there 
are two approaches that can be followed to process NN queries efficiently: 

• specialized access methods, such as M-trees [21] and Slim-trees [139,140], 
can be constructed to organize the database objects and provide the required 
techniques for query processing, 

• algorithms, such as FastMap [30], can be applied to map objects to a hy­
pothetical multidimensional space, taking into consideration the distances 
among the objects. Then, NN queries are easily supported, by using spatial 
access methods. 

Both techniques have been successfully applied in several application do­
mains. The great advantage of the second approach is that after the transfor­
mation, multidimensional access methods can be used to organize the objects. 
On the other hand, the first approach requires specialized access methods and 
query processing is guided by the metric space properties. For any objects Oj 
and Oj, if D{Oi, Oj) is their distance, then for a metric space the following 
properties hold: 

1 D{Oi,Oj) > 0 (positivity) 

2 D{Oi, Oj) = D{Oj,Oi) (symmetry) 

3 D{Oi, Oj) < D{Oi, Ok) + D{Ok, Oj) (triangular inequality) 

In this book we focus on the vector representation of objects and rely on 
multidimensional access methods for indexing and retrieval. 

4. Nearest Neighbor Queries in R-trees 
A very simple method for NN query processing is to search sequentially all 

database objects, keeping a list of the k nearest neighbors determined. Ev-
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idently, this approach is both VO and CPU intensive, since the number of 
database objects is usually very large. Therefore, several algorithms have been 
reported in the literature aiming at efficient processing of fc-NN queries, exploit­
ing the good properties of index structures to reduce both the number of disk 
accesses and the required processing time. During the search process, several 
objects are discarded if it is not possible to be part of the final answer. 

The first reported algorithm for NN query processing in R-trees has been 
proposed in [106], which is a modification of the algorithm reported in [33] for 
the /s-d-tree. In order to find the nearest neighbor of a point, the algorithm starts 
form the R-tree root and proceeds downwards. The key idea of the algorithm is 
that many branches of the tree can be discarded according to some rules. Two 
basic distances are defined in n—A space, between a point P with coordinates 
(pi,P2, •••,Pn) and a rectangle-R with comers (si, S2,..., s„) and (ti,i2, •••, tn) 
(bottom-left and top-right respectively). These distances are defined as follows: 

Definition 3.1 
The distance MINDIST{P, R) of a point P from a rectangle R, is defined as 
follows: 

MINDIST{P, R) = 

\ i=i 
Ti 

Sj, 

tj, 

Vh 

Pj < Sj 

Pj > tj 
otherwise 

where: 

n 
Definition 3.2 
The distance MINMAXDIST{P, R) of a point P from a rectangle R, is 
defined as follows: 

MINMAXDIST{P, R) = / min {\pk - rmkl"^ + V \pj - rMj\'^) 
\ l<k<n ^—^ 
V i<i<n,i/fe 

where: 

rrrik 
Sk, 

tk, 

^^={?: 

P k < ^ 
otherwise 

Pj > ^ ^ 
otherwise 

n 
Clearly the MINDIST is the optimistic metric, since it is the minimum 

possible distance that the nearest neighbor of the query point P can reside in 
the corresponding data page. On the other hand, MINMAXDIST is the 
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pessimistic metric since it is the furtiiest possible distance where the nearest 
neighbor of P can reside in the current data page. Therefore, the latter metric 
guarantees that the nearest neighbors of P lies in a distance not greater than 
MINMAXDIST. The above definitions are shown graphically in Figure 
3.3. 

MINDIST 

MINMAXDIST 

Figure 3.3. MINDIST and MINMAXDIST between a point P and two rectangles Ri and R2. 

The three basic rules used for pruning the search in the R-tree during traver­
sal follow. Notice that these rules are applied only if one nearest neighbor is 
required. 

Rulel 
If an MBR R has MINDIST{P, R) greater than MINMAXDIST{P, R') 
of another MBR R', then it is discarded because it cannot enclose the nearest 
neighbor of P. 

Rule 2 
If an actual distance d from P to a given object is greater than MINMAX-
DIST{P, R) from P to an MBR R, then d is replaced by MINMAX-
DIST{P, R) because R contains at least one object which is closer to P. 

Rule 3 
If dcur is the current minimum distance, then all MBRs Rj with MINDIST 
{P,Rj] 
of P. 

> dcur ^ e discarded, because they cannot enclose the nearest neighbor 

Upon visiting an internal tree node. Rule 1 and Rule 2 are used to discard 
irrelevant branches. Then, a branch is selected according to a priority order. 
Roussopoulos et al. suggest that when the overlap is small, the MINDIST 
order should be used since it would discard more candidates. This is also 
verified in the experimental results of their work. Therefore, the branch which 
correspond to the minimum MINDIST among all node entries is chosen. 
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Upon returning from the subtree processing, Rule 3 is applied to discard other 
candidates (if there are any). The corresponding algorithm is illustrated in 
Figure 3.4. 

Algorithm NNSearch(Node, Point, Nearest) 
1. ifNode.type==LEAF 
2. for i=l to Node.count 
3. dist - objectDIST(Point, Node.branch[i].rect) 
4. if dist < Nearest.dist 
5. Nearest.dist = dist 
6. Nearest.rect = Node.branch[i].rect 
7. endif 
8. endfor 
9. else 
10. genBranchList(branchList) 
11. sortBranchList(branchList) 
12. last = pruneBranchList(Node, Point, Nearest, branchList) 
13. for i = 1 to last 
14. newNode = Node.branch[branchList[i]] 
15. NNSearch(newNode, Point, Nearest) 
16. last = pruneBranchList(Node, Point, Nearest, branchList) 
17. endfor 
18. endif 
19. end 

Figure 3.4. NN search algorithm for R-trees. 

NN queries in the R"^-tree have been studied by Belussi et al. [8]. Recall 
that in the R"'"-tree no overlap is allowed between nodes in intermediate levels, 
resulting in object clipping. Therefore, an object may be split to two or more 
parts to respect the above requirement. Their method considers information 
on the reference space to improve the search. The resulting data structure 
integrates the R+-tree with a regular grid, indexed by using a hashing technique, 
combining the advantages of the rectangular space decomposition attained by 
R+-trees, with a direct access attained by hashing. 

5. Nearest Neighbor Queries in Multimedia Applications 
In several applications, a transformation is applied to the original objects to 

obtain a more convenient representation. This technique is ubiquitous to apply 
efficient indexing schemes for fast query processing, and is applied extensively 
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in multimedia databases. However, the fundamental R-tree NN query process­
ing method presented in the previous section must me adapted accordingly. The 
main reason for this modification is the avoidance of false dismissals, which 
are objects that satisfy the query constraints but are not retrieved by the search 
method. Note that although false alarms are allowed (because they can be elim­
inated in the refinement step), false dismissals result in information loss and 
therefore they must be avoided. 

Let D{0\, O2) be the distance between two objects in the original space, and 
d{oi, 02) be the distance of the objects in the transformed space. In order to 
guarantee the avoidance of false dismissals, D and d must satisfy the following 
inequality as it has been proven in [5]: 

d{oi,02)<D{Ou02) (3.1) 

We assume that our database is composed of a number of audio files, where 
each one has been sampled with the same rate, and all have equal duration. Our 
target is, given an audio file, to determine the k audio files that are closer to 
the query, with respect to the Euclidean distance. Although there are several 
methods proposed to attack this problem, we focus on a simple technique to 
illustrate the impact of transformations to the NN search algorithm. Since 
the original data are too complex to be handled by an indexing scheme, we 
transform each audio file to the frequency domain by applying the Discrete 
Fourier Transform (DFT). Then, we keep only the first few DFT coefficients in 
order to represent each audio file as a point in a multidimensional space. This 
enables the use of R-trees (or any other multidimensional access method) to 
index the multidimensional points. 

For instance, assume that the audio files are transformed to points in the 
2-d space, by the above transformation mechanism. First, we discuss the pro­
cessing of range queries and the application of the filter-refinement processing 
paradigm. Next, NN queries are discussed. Given a query audio Q and a non-
negative real number e the range query asks for all audio files that lie in at most 
e distance from Q. Query processing begins from the R-tree that has been built 
on the transformed objects. The query audio Q must be also transformed by 
using the same transformation method applied to the data objects. Therefore, 
a multidimensional point q is derived from the query audio Q. Using q and 
e the R-tree is searched and let oi, 02,..., o„ be the n multidimensional points 
that lie inside the circle with radius e centered at q. Because of Equation 3.1, 
some of the retrieved objects are false alarms and are not part of the final an­
swer Therefore, by examining the original characteristics of the data objects 
Oi,...,On false alarms are discarded. 

Searching for the k nearest neighbors of a query audio file Q is a bit more 
complicated than range search. Again, let q be the transformed query and k the 
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requested number of nearest neighbors. The basic algorithm is comprised of 
the following steps: 

1 The R-tree is searched to determine the k objects oi,..., o^ that are the nearest 
neighbors of q in the transformed space. Since the retrieved objects may 
not be the nearest neighbors of Q in the original space, further processing 
is required. 

2 Let Om, where 1 < TO < /c, be one of the retrieved multidimensional 
points such that Om is the furthest from q among the retrieved candidates. 
The distance D{Q, Om) is determined between Q and Om in the original 
space. Evid&aily, d{q,Om) < ^(QiOm) because of Equation 3.1. Us­
ing D{Q, Om) as the radius, a range query is performed centered at q by 
searching the R-tree, and a new set of r candidates is retrieved, where k <r. 

3 The final set of objects is determined by inspecting the new set of candidates 
and selecting the k amongst them that are closer to the query object. 

We see that the /c-NN algorithm contains a step that involves a range query. 
This is necessary, since the retrieval of the k nearest neighbors in the transformed 
space does not guarantee that all relevant objects have been found. This happens 
because the distance between two objects in the transformed space is lower 
than their corresponding distance in the original space. Therefore, the nearest 
neighbors in the transformed space may not correspond to the real nearest 
neighbors of the query object. 

ID rank in original space rank in transformed space D{Q,0) d{q,o) 

IDl 

ID2 

ID3 

ID4 

IDS 

ID6 

1 

5 

2 

3 

4 

6 

1 

2 

3 

4 

5 

6 

10 

50 

15 

20 

30 

70 

9 

12 

15 

18 

20 

50 

Table 3.1. Distances between a query object and some data objects. 

This is illustrated in Table 3.1, where the distance between a query object 
and six database objects is depicted for the original and the transformed space. 
It is clear that the three nearest neighbors of the query object in the transformed 
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space are IDl, ID2 and ID3 with distances 9,12 and 15 respectively. However, 
the three nearest neighbors in the original space are objects IDl, ID3 and ID4. 
If we rely on the nearest neighbors in the transformed space, object ID4 is lost, 
and therefore the final result is not correct (we have false dismissals). On the 
other hand, if we proceed with steps 2 and 3 described above, then the answers 
are retrieved correctly. From the three candidates retrieved, object ID2 gives 
the maximum distance in the original space from the query point (i.e. 50). The 
range query with radius 50 in the transformed space retrieves the objects IDl, 
ID2, ID3, ID4 and ID5. Finally, by inspecting the distances of these objects 
from the query object in the original space, we conclude that the final answer 
is composed by objects IDl, ID3 and ID4. 

6. Summary 
k-NN queries are extensively used in spatial, spatiotemporal and multimedia 

database systems. Due to their importance, several query processing algorithms 
have been developed for various access methods to provide fast retrieval of the 
answers. 

The difficulty in k-NN query processing is that the distance to the fc-th nearest 
object is not known in advance, and therefore an ordinary range query can not 
be applied. The first proposed k-NN processing algorithm for the R-tree access 
method has been pubhshed in [106]. 

The algorithm is based on the branch-and-bound technique and on a set of 
rules that are used to discard irrelevant tree branches. The algorithm can be 
applied to other hierarchical access methods as well, with minor modifications. 

In several cases (especially in databases with complex objects), data objects 
are transformed to another space to ease the indexing mechanism and therefore 
allow for more efficient object retrieval during queries. In order to process k-NN 
queries a few modifications are required to the fundamental algorithm, to avoid 
false dismissals. The modified algorithm is composed by a) an ordinary k-NN 
search in the transformed space, b) a range search, and c) a final refinement step 
to discard false alarms. 

7. Further Reading 
The complete description of the examined fc-NN algorithm for R-trees can 

be found in [106], where the authors present the algorithm in detail and provide 
performance evaluation results. In [114] a multistep k-NN search is proposed 
to provide efficient processing of NN queries in multimedia database systems. 

Reverse NN queries determine the set of database objects that have the query 
point as the nearest neighbor. The reverse and the nearest neighbor problems 
are asymmetric. If the nearest neighbor of a query point P is a data point Q, 
then it does not hold in general that P is the nearest neighbor of Q (i.e., P is 
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not necessarily the reverse nearest neighbor). The aforementioned problem has 
been introduced in [56], however it ŵ as restricted to static data and specialized 
data structures. Stanoi et al. [125] have developed a reverse NN algorithm for 
the R-tree, which can handle dynamic data efficiently. Recently, Tao, Papadias 
and Lian have studied the problem for high-dimensional spaces [134]. 

Hjaltason and Samet [40] presented the problem of incremental NN searching 
with an R-tree. An incremental fc-NN query determines the data objects in their 
order of distance from the query object {ranking). In this method the variable 
k is not necessary to be given in advance, and the user is able to request more 
nearest neighbors, avoiding the recomputation costs. 

Similarity range queries in the context of image databases are studied in 
[83]. In [5, 31] similarity range queries in time-series are investigated, where 
the R-tree is used to index time-series data. Query processing techniques and 
access methods for similarity join queries are studied in [14, 121]. Efficient 
algorithms and performance evaluation for closest-pair query processing can 
be found in [22, 23, 24, 25]. 



Chapter 4 

ANALYSIS OF NEAREST NEIGHBOR QUERIES 

1. Introduction 
An important aspect in database systems is the ability to predict or estimate 

the cost of the various operations, before their execution. This information 
can be exploited by query optimizers towards efficient query execution plan 
(QEP) generation. Complex queries (involving selections and joins from sev­
eral database tables) can be executed in many different ways. The determination 
of the best query execution plan is not a trivial task, requiring additional knowl­
edge regarding the data distribution, the query distribution, the selectivity of an 
operator, the index availability, and many more. 

Relation B 

Relation A 

Relation B Relation A 

(a) (b) 

Figure 4.1. Two equivalent query execution plans. 

As an example, consider the two different query execution plans depicted in 
Figure 4.1. Both QEPs, retrieve the same answer, although by using different 

37 
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operator ordering. The first QEP first performs the join operator and then 
selection is applied. The second QEP first performs the selection and then 
processes the join. Although both QEPs are equivalent with respect to the 
answer, their corresponding execution cost may be considerably different. 

In this chapter, we study the estimation of the number of disk accesses for the 
R-tree leaf level for 1-NN queries. More specifically, lower and upper bounds 
are derived giving the minimum and maximum number of leaf accesses for the 
processing of 1-NN queries. In order to achieve this goal, the concept of fractal 
dimension is used. The fractal dimension is a very powerful tool that can be 
used to describe the data skew of a dataset. It has been successfully applied 
for range and join queries [9, 102]. Here, we focus on 1-NN queries and we 
assume that the underlying R-tree has been constructed by an effective packing 
method to guarantee the good properties of the structure. 

The material of this chapter is based on [93] and is organized as follows. 
In Section 2 we give the analytical considerations regarding the performance 
estimation of 1-NN queries, whereas Section 3 contains experimental results 
comparing the real and the estimated number of disk accesses for 1-NN query 
processing on R-trees. 

2. Analytical Considerations 
2.1 Preliminaries 

In this section, we derive lower and upper bounds for the performance of 
the branch-and-bound algorithm. We are interested in the estimation of the 
number of disk accesses to R-tree leaf pages, because in general the upper 
levels occupy small space in comparison to the leaf level, and therefore can fit 
in main memory. The basic notations are presented in Table 4.1. 

Assume that the dataspace is composed of a set of points <S in the 2-d space. 
The problem is, given a point P{p\,P2) G S, to find its NN point Q(gi, 52)-
Let dnn be the actual Euclidean distance between the points P and Q. The 
following propositions hold: 

Proposition 4.1 
The minimum number of leaf pages touched is the number of leaf pages inter­
sected by the circle Ci with center P and radius d„„. 

Proof 
The distance dnn is not known in advance. Therefore, even if the nearest neigh­
bor of the query point is found, the algorithm does not stop until all candidates 
are examined. Asaconsequence, all data pages X^ with M/A/^i3/5T(P,Xi) < 
dnn must be searched. • 
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Symbol Description 

S 

N 

n 

a 

Do 

D2 

^max 

Cavg 

u... 
(3>rin 

dm 

g 

L{q) 

ound 

ound 

a set of 2-d points 

population of the indexed dataset 

space dimensionality 

side of tlie square-like data page MBR 

Hausdorff'fractal dimension 

correlation fractal dimension 

maximum number of objects per node 

average number of objects per node 

average space utilization 

distance between a query point and its NN point 

distance from a query point to the MINMAXDIST vertex 
of the first retrieved data page) 

query window side 

number of leaf accesses for a window query of side q 

lower bound for the number of leaf accesses 

upper bound for the number of leaf accesses 

Table 4.1. Basic notations used throughout the analysis. 

Before stating Proposition 4.2, we introduce the following basic assumption 
which is a reasonable property of the algorithm, when the tree nodes have no 
or very little empty space: 

Basic Assumption 
The first data page that the algorithm visits, is the data page with the minimum 
MINDIST among all data pages. • 

Proposition 4.2 
The maximum number of leaf pages touched is the number of leaf pages that the 
circle C2 with center P and radius dm intersects, where dm is the MINMAX­
DIST between P and the first touched leaf page. 
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Proof 
Let R denote the first visited data page MBR. Clearly, the distance MINMAX-
DIST{P, R) is the maximum possible "safe" distance where a nearest neigh­
bor can be found in this data page. Moreover, it is possible that all data pages 
Xi with HINDIST{P, Xi) < MINMAXDIST{P, R) will be visited, if a 
particular visiting sequence occurs. D 

nearest neighbor of P 

(query point) f 

w 

MNDIST(PJ) 

MNMAXDIST(P,I) • 

(b) 

Figure 4.2. (a): example of Proposition 4.1, (b): example of Proposition 4.2. 

In Figure 4.2(a) an example is illustrated for Proposition 4.1. The arrow 
points to the nearest neighbor of the query point P. Even if the algorithm 
reaches this point, it is not known that this is the nearest neighbor of P, until 
data pages 1 and 2 are examined. In Figure 4.2(b) Proposition 4.2 is explained. 
Page 1 is the first visited data page. In the worst case the nearest neighbor of 
P , in this page, resides in MINMAXDIST{P, 1) from P. However, it is not 
guaranteed that pages 2 and 3 will be visited. This will occur in the worst case 
only, and depends on the visiting sequence and the location of the "temporary" 
NN point in each data page. 

The above propositions give a lower bound (Proposition 4.1) and an upper 
bound (Proposition 4.2) for the number of leaf nodes touched by the algo­
rithm, on the average. We note the importance of the distance dnn, which is 
the expected distance from P to its nearest neighbor. Therefore, if we had an 
estimation for dnn, we could provide estimations for the best and worst perfor­
mance of NN queries. The following subsection deals with the estimation of 
dnn and dm. 

2.2 Estimation of dnn and d^ 
We are interested in the estimation of dnn for arbitrary object distributions. 

Real datasets show a clear divergence from the uniformity and independence 
assumption [29] and, therefore, it is better to consider uniformity as a special 
case. In [9] a formula has been reported that estimates the average number of 
neighbors n6(e, shape) of a point P within distance e from P, using the concept 
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of the correlation fractal dimension of the point set: 

nb{e, shape) = (^^^l-rneie^hape))^ ^=/" ^ ^^^ . e^^ (4.1) 
\ volume[€,rect) J 

where N is the dataset population, D2 is the correlation fractal dimension, n 
is the dataspace dimensionality (2 in our case), and shape is the shape with its 
center of gravity on a point P of the dataset. Since we are interested in NN 
queries with respect to the Euclidean distance, it is sufficient to set shape = 
circle. Making the appropriate modifications in Equation (1) we get: 

/ _ 2 \ £ ' 2 / 2 
nb{e, circle) = ( 7 - 2 ) • (A^ - 1) • 2^^ . g D2 

By simplifying we get: 

nb{e, circle) = (^/7f)^2 • {N ~ 1) • e^^ (4.2) 

We can use Equation (4.2) to estimate the average distance (dnn) of a point 

P to its nearest neighbor. We are searching for an e such that nb{e, circle) = 1. 

After substitution in Equation (4.2) and algebraic manipulations we reach: 

The above equation holds for an arbitrary dataset, when we allow queries to 
land only on data points. The uniformity case is derived by setting D2 = 2. 

Let us now try to estimate the distance dm, which is the minimum MIN-
MAXDIST between the query point P and the first visited data page. We 
assume that the MBRs of the data pages are squares with side a. The following 
proposition holds: 

Proposition 4.3 
The maximum possible difference between M7A' 'MAXD/5T(P, R) and HIN­
DI ST{P, R) from a query point P to an MBR R is a. 

Proof 
This happens when the query point P coincides with a vertex of the MBR R. 
This is demonstrated in Figure 4.3. As we can see, when the query point P 
approaches the bottom-right vertex of the MBR, the difference between MIN-
MAXDIST and HINDI ST increases. n 

Assuming that the nearest neighbor of a query point lies in the half distance 
(on the average) between the difference oi HINDI ST and HINMAXDIST, 
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MINMAXDIST 

MINDIST 

Figure 4.3. When the query point P coincides with a vertex of the MBR, then the maximum 
difference (a) between MINDIST and MINMAXDIST is obtained. 

we need only to augment dnn by cr/2 to reach the MINMAXDIST. There­
fore, we conclude that the distance dm which gives the upper bound of Propo­
sition 4.2 is calculated by the following equation: 

dm = _ _ V + ^ (4.4) a 

^- V ( ^ -1) ^ 2 

2.3 Performance Estimation 
Let <S be a set of A'' data points distributed in the unit square address space. 

We are interested in estimating the number of data pages retrieved, when the 
nearest neighbor is requested for any point P e S. Given a query window 
qxq, the number of leaf nodes L{q) retrieved is given by a formula reported in 
[29], which assumes that queries are distributed uniformly on the address space 
i.e. each dataspace portion has the same probability to be requested: 

Liq) = J^-(a + qf (4.5) 
a avg 

where a 
l/Do 

^avg — ^rr Uavg, N is the dataset population. 

Do is the Hausdorjf (box counting) fractal dimension of the underlying point 
dataset, Cmax is the maximum node capacity and Uavg is the average space 
utilization of the R-tree nodes. 

However, in our case we cannot use Equation (4.5). This is due to the fact, 
the queries can land only on (existing) data points and therefore at least one 
leaf access will occur. In other words, in our case the query model assumes 
that the query distribution follows the data distribution (i.e. each data object 
has the same probability of retrieval [87]). Therefore, we are going to derive a 
formula that obeys the latter query model. 

Assume we have a q' x g window and we have to perform a range query Q 
over the underlying address space. We know that the average size of each data 
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Figure 4.4. Example of an enlarged data page. 

page MBR is cr x cr. We are interested in calculating the probability Pfetch 
that a data page will be fetched due to the execution of Q. A data page will be 
fetched only if the centroid of the window q'x q falls in the area surrounded by 
the dashed line of Figure 4.4. Note however, that the query window centroid 
can only coincide with an existing data point (according to the query model 
considered in this chapter). Therefore, the probability Pfetch can be defined as: 

P fetch — 
GoodPoints 

AllPoints 
(4.6) 

where GoodPoints is the number of points enclosed by the enlarged {a + q)x 
[a- + q) window, and AllPoints is the population, N, of the indexed dataset. 
However, we have the appropriate mathematical tools to calculate GoodPoints. 
We can use Equation (4.1) setting shape = red and e = ^ ^ . This requires 
an optimistic assumption that we can always find a data point on the data page 
MBR centroid. Therefore, we have: 

GoodPoints = (N-l)-{a + g)^^ 

From Equations (4.6) and (4.7) we get: 

N 
fetch — 

N 
(a + q) D2 

(4.7) 

(4.8) 

Our next step is to calculate the average number of data page accesses. We 
know that the total number of data pages is 7 ^ . Therefore: 

L{q) 
N 

C, 
•P fetch L{q) 

avg 

N-1 

avg c, 
{<^ + q A (4.9) 

avg 

In order to get the lower and upper bounds for the number of leaf accesses, 
we must substitute q in Equation (4.9), with 2 • dnn from Equation (4.3), and 
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2 • dm from Equation (4.4), respectively. Tlierefore, we have: 

•^bound 

a 
• (a + 2 • dnnf^ 

avg 

Ubound = - 7 ; • (cr + 2 • dm) ^ 

a 

(4.10) 

(4.11) 
avg 

Equations (4.10) and (4.11) include uniformity as a special case. Clearly, for 
uniform point sets Do ~ 2 and D2 »* 2, so we can use the above equations 
for any kind of point set. Also, we note that Lhound and Ubound are bounds on 
the average case and not absolute ones. This means that during NN query pro­
cessing, the lower bound may be higher than the leaf pages touched. However, 
we are interested on the average case, and exceptional cases do not harm the 
generality. 

3. Performance Evaluation 
3.1 Preliminaries 

We implemented the branch-and-bound algorithm [106] and the Hilbert-
packed R-tree [49] in the C programming language under UNIX, and ran the 
experiments on a DEC Alpha 3000 workstation. We used randomly generated 
as well as real-life points to verify the theoretical aspects. The datasets used are 
depicted in Figure 4.5. The real-life points are 9,552 road intersections of the 
Montgomery County, Maryland (MG). For uniform point sets we have Do ~ 2 
and D2 « 2, whereas for the MG points Do « 1.719 and D2 « 1.518 [9]. 

•̂ ' : , . ; : ; 'JH 

• • , • " '• 

%wm: 
• ; ; . - , • L ; - : . : . -

' :,-iM':^i4:: 

. • ' • • ; . 

Random points MG points 

Figure 4.5. Datasets used in tiie experiments. 
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3.2 Experimental Results 
In all experimental series, for each dataset, the average number of leaf ac­

cesses was determined by issuing an NN query for each existing data point. 
Also, the lower and upper bounds for the average number of leaf accesses were 
calculated. The measured average number of leaf accesses is shown in the last 
column of each subsequent table. 

Experiment 1 
The dataset is composed of a number of uniformly distributed points. The 
maximum R-tree node capacity was set to 50 objects. In Table 4.2 we present 
the results for uniform data of various populations. 

Experiment 2 
The dataset is composed of uniformly distributed points. Here, we keep the 
dataset population constant at 50,000 and vary the maximum tree fanout 
from 10 to 200. The results are shown in Table 4.3. 

Experiment 3 
The dataset is composed of the 9,552 MG points. Again, we vary the tree 
fanout from 10 to 200 as in Experiment 2. The results are presented in Table 
4.4 

From these tables it is evident that the lower and upper bounds enclose very 
well the measured average number of leaf accesses. Therefore, one could use 
the simple Formulae (4.10) and (4.11) to estimate the performance of an NN 
query. We observe that the measured number of leaf accesses is generally closer 
to the lower bound than the upper bound. This gives us a strong indication that 
the branch-and-bound algorithm with the MINDIST criterion exploits the 
"goodness" property of the packed R-tree very effectively. The lower bound 
gives an optimistic metric, whereas the upper bound gives a pessimistic met­
ric. Both bounds are valuable in query processing and optimization. Another 
observation is that when the data (and hence the query) distribution is uniform, 
the bounds do not depend on the dataset population. This can be verified by 
substituting the appropriate values for a, dnn and dm in Equations (4.10) and 
(4.11), and is illustrated in Table 4.2. 

4. Summary 
The cost estimation of NN queries is not a trivial task. In this chapter we 

have studied an approach which is based on the fractal dimensionality of the 
dataset. We have focused on point datasets in 2-d space, which are indexed by 
a well-formed R-tree structure. 

We have shown that the actual distance between a point and its nearest neigh­
bor plays a very important role for the performance estimation of NN queries. 
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Population Lower Upper Measured 

1,000 

2,000 

10,000 

20,000 

50,000 

100,000 

200,000 

500,000 

1.34 

1.34 

1.34 

1.34 

1.34 

1.34 

1.34 

1.34 

4.66 

4.66 

4.66 

4.66 

4.66 

4.66 

4.66 

4.66 

1.63 

1.58 

1.70 

1.80 

2.04 

1.88 

2.28 

1.97 

Table 4.2. Number of leaf accesses vs. data population. Data=Uniform, Fanout=50. 

Fanout Lower Upper Measured 

5 

10 

20 

50 

100 

200 

2.26 

1.84 

1.56 

1.34 

1.23 

1.16 

6.27 

5.55 

5.07 

4.66 

4.46 

4.32 

3.02 

2.68 

2.19 

2.03 

1.90 

1.82 

Table 4.3. Number of leaf accesses vs. fanout. Data=Uniform, Population=50,000. 

Fanoul Lower Upper Measured 

5 

10 

20 

50 

100 

200 

3.22 

2.70 

2.33 

1.98 

1.77 

1.61 

7.99 

7.01 

6.24 

5.44 

4.94 

4.52 

4.13 

3.06 

2.36 

2.27 

1.89 

1.81 

Table 4.4. Number of leaf accesses vs. fanout. Data=MG points, Population « 9,000. 
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Experiments based on synthetic and real-life data have shown that the derived 
bounds enclose very closely the number of leaf accesses introduced during the 
processing of an NN query. In fact, the performance of the branch-and-bound 
algorithm is closer to the lower bound, and therefore is very efficient. This 
estimation could be exploited by a query optimizer, to derive an efficient query 
processing plan. 

5. Further Reading 
The cost estimation of spatial operators is a very important research field and 

many important results have been published. Since most database operations 
are I/O intensive, the number of disk accesses gives an idea about the operation 
cost. In [9, 29, 87, 135] the authors provide closed-form formulae for the 
estimation of the number of R-tree node accesses for range queries. In [12,133] 
performance estimation of NN queries in multidimensional spaces is studied in 
detail. Spatial join performance estimation is discussed in [15,32,70, 80,102]. 



Chapter 5 

NEAREST NEIGHBOR QUERIES 
IN MOVING OBJECTS 

1. Introduction 
In Chapter 3 we studied NN query processing in stationary datasets (the 

object locations remain fixed, or change very rarely). In this chapter we fo­
cus on spatiotemporal databases, which is an emerging research field. More 
specifically, we assume that data objects are not stationary, but can change their 
location in space. NN query processing for moving objects is a challenging re­
search area, since traditional query processing techniques are not very efficient 
and therefore are not directly applicable. 

Spatiotemporal database systems aim at combining the spatial and temporal 
characteristics of data. There are many applications that benefit from efficient 
processing of spatiotemporal queries such as: mobile communication systems, 
traffic control systems (e.g., air-traffic monitoring), geographical information 
systems, multimedia applications. The common basis of the above applications 
is the requirement to handle both the space and time characteristics of the 
underlying data [122, 136, 145]. These applications pose high requirements 
concerning the data and the operations that need to be supported, and therefore 
new techniques and tools are needed towards increased processing efficiency. 

A moving dataset is composed of objects whose positions change with respect 
to time (e.g., moving vehicles). Examples of basic queries that could be posed 
to such a dataset include: 

• range query: given a region (e.g., a rectangle) R that changes position and 
size with respect to time, determine the objects that are covered by R from 
time point tg to te. 

• nearest neighbor query: given a moving point P determine the k nearest 
neighbors of P within the time interval [is, ie\-

49 
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• join query: given two moving datasets S\ and ^2, determine tiie pairs of 
objects (si,S2) with s\ e ^i and S2 G ^2 such that si and S2 overlap at 
some point in [tg, tg]. 

• closest-pairs query: given two moving datasets 5i and 52, determine k pairs 
of objects (si,S2) with si e ^i and 52 G ̂ 2 such that their pairwise distance 
is the smallest amongst all possible pairs for the time interval [tg, te]. 

Queries that require an answer for a specific time instance (time-slice queries) 
are special cases of the above examples, and generally are more easily processed. 
Queries that must be evaluated for a time interval [tg, te] are characterized as 
continuous [123,131]. In some cases, the query must be evaluated continuously 
as time advances. The basic characteristic of continuous queries is that there 
is a change in the answer at specific time points, which must be identified to 
produce correct results. 

Existing methods are either computationally intensive performing repetitive 
queries to the database, or are restrictive with respect to the application settings 
(i.e., are applied only for static datasets, or are applicable for special cases that 
limit the space dimensionality or the requested number of nearest neighbors). 
The objective of this chapter is twofold: 

• to study efficient algorithms for NN query processing on moving object 
datasets, 

• to compare the proposed algorithms with existing methods through an exten­
sive experimental evaluation, by considering several parameters that affect 
query processing performance. 

The chapter is based on [103] and is organized as follows. In Sections 2 
and 3 we give the appropriate background and related work for completeness. 
In Section 4, the proposed approach is studied in detail and the application to 
TPR-trees is presented. Finally, in Section 5, a performance evaluation of all 
methods is conducted and the results are interpreted. 

2. Organizing Moving Objects 
The research conducted in access methods and query processing techniques 

for moving-object databases are generally categorized in the following areas: 

• query processing techniques for past positions of objects, where past posi­
tions of moving objects are archived and queried, using multiversion access 
methods or specialized access methods for object trajectories [66, 81, 100, 
129, 146], 

• query processing techniques for present and future positions of objects, 
where each moving object is represented as a function of time, giving 
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the ability to determine its future positions according to the current char­
acteristics of the object movement (reference position, velocity vector) 
[4,44, 47, 53, 54, 60, 77, 110, 144], 

We focus on the second category, where it is assumed that the dataset consists 
of moving point objects, which are organized by means of a Time-Parameterized 
R-tree (TPR-tree) [110]. The TPR-tree is an extension of the well known R*-
tree [7], designed to handle object movement. Objects are organized in such a 
way that a set of moving objects is bounded by a moving rectangle to maintain a 
hierarchical organization of the underlying dataset. The TPR-tree differs from 
the R*-tree in the following key characteristics: 

• bounding rectangles in the TPR-tree internal nodes although are conserva­
tive, they are not minimum in general, 

• the TPR-tree is efficient for a time interval [tQi,H), where H (horizon) is the 
time point which suggests a reorganization, due to extensive overlapping of 
bounding rectangles. 

• all metrics used for insertion, reinsertion and node splitting in the TPR-tree 
are based on integrals which calculate overlap, enlargement and margin for 
the time interval [io, H), 

• TPR-trees answer time-parameterized queries for a given time interval [ts ,te], 
or for a specific time instance. 

F 
t. 

;io 

(a) example of a moving bounding rectangle (b) mapping the velocity vector to x and y axis 

Figure 5.1. Generation of a moving bounding rectangle. 

Figure 5.1 depicts how a moving bounding rectangle is generated for a set 
of moving objects in 2-d space. Each object is characterized by its reference 
position (location) and its velocity vector. If the object movement is not parallel 
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to the xory axis, the velocity vector is analyzed as it is shown in Figure 5.1(b). 
The generated moving bounding rectangle is constructed by calculating the 
MBR for the reference time instance f o and by assigning a velocity vector to its 
four edges, as it is shown in Figure 5.1(a). Bounding rectangles for the upper 
tree levels are generated similarly. 

3. Nearest Neighbor Queries 
Allowing the query and the objects to move, an NN query takes the following 

forms: 

• Given a query point reference position P, a query velocity vector Vq, a time 
point tx and an integer k, determine the k nearest neighbors of P at tx 
(time-slice NN query). 

• Given a query point reference position P, a query velocity vector Vq, an 
integer k and a time interval [^1,^2), determine the k nearest neighbors of 
P according to the query and object movements from ii to t^ (continuous 
or time-interval NN query). 

The second query type is more difficult to answer, since it requires knowledge 
of specific time instances which indicate that there is a change in the answer 
set. These time instances are called split points. 

Y (meters) 

k 

1 . , j ^ 1 

1 

0 1 2 3 4 5 6 7 8 9 10 X(meters) 

Figure 5.2. A NN query example in a moving dataset. 

Figure 5.2 shows an example database of four moving objects. Assume that 
the k=2 nearest neighbors are requested for the time interval [0,5]. Assume also 
that the query point is static (black circle). By observing the object movement 
with respect to the query, it is evident that for the time interval [0,2) the nearest 
neighbors of P are h and a, whereas for the time interval [2,5) the nearest 
neighbors are c and d. In the sequel, we briefly describe research results towards 
solving NN queries in moving datasets. 

Kollios et al. [53] propose a method able to answer NN queries for moving 
objects in 1-d space. The method is based on the dual transformation where 
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a line segment in the native space corresponds to a point in the transformed 
space, and vice-versa. The method determines the object that comes closer to 
the query between [tg, ie] and not the nearest neighbors for every time instance. 

Zheng et al. [148] proposed a method for computing a single nearest neighbor 
{k = 1) of a moving query, applied to static points indexed by an R-tree. The 
method is based on Voronoi diagrams and it seems quite difficult to be extended 
for other values of k and higher space dimensions. 

In [123] a method is presented to answer such queries on moving-query, 
static-objects cases. Objects are indexed by an R-tree, and sampling is used to 
query the R-tree at specific points. However, due to the nature of sampling, the 
method may return incorrect results if a split point is missed. A low sampling 
rate yields more efficient performance, but increases the probability of incor­
rect results, whereas a high sampling rate poses unnecessary computational 
overhead, but decreases the probability of incorrect results. 

Benetis et al. [10] propose an algorithm capable of answering NN queries 
and reverse NN queries in moving-object datasets. The proposed method is 
restricted in answering only one nearest neighbor per query. 

In [131] the authors propose an NN query processing algorithm for moving-
query moving-objects, based on the concept of time-parameterized queries. 
Each query result is composed of the following components: i) R is the current 
query result set, ii) T is the time point in which the result becomes invalid, and 
iii) C is the set of objects that influence the result at time T. Therefore, by 
continuously calculating the next set of objects that will influence the result, we 
determine the nearest neighbors of the query from ii to i2- A TPR-tree index 
is used to organize the moving objects. 

The main drawback of the aforementioned method is that the TPR-tree is 
searched several times in order to determine the next object that influences the 
current result. This implies additional overhead in CPU and I/O time, which is 
more severe as the number of requested nearest neighbors increases. In [130] 
the same authors present a method which is applicable for static datasets to 
overcome the problems of repetitive NN queries. By assuming that the dataset 
is indexed by an R-tree structure, a single query is performed and therefore each 
participating tree node is accessed only once. Performance results demonstrate 
that NN queries are answered much more efficiently concerning query response 
time. However, the proposed techniques can only be applied for static datasets. 

Table 5.1 presents a categorization of NN queries with respect to the charac­
teristics of queries and datasets. There are four different problem versions that 
are formulated by considering queries and datasets as static or moving. The 
table also summarizes the previously mentioned related work for each problem. 

In the sequel, we study an efficient algorithm for NN query processing for 
moving-query moving-object databases, with the following characteristics: 

• the method is applied for any number of requested nearest neighbors. 
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Query Data Related Work 

Static 

Static 

Moving 

Moving 

Static 

Moving 

Static 

Moving 

conventional tecliniques 

special case of moving-query moving-data 

Roussopoulos et al [123] 
Zheng etal. [148] 
Taoetal. [130] 

Taoetal. [131] 
KoUios et at. [53] 
Benetisetal. [10] 

Table 5.1. NN queries for different query and data characteristics. 

• the metliod can be applied for any number of space dimensions, since only 
relative distances are computed during query processing, 

• different tree pruning algorithms may be applied during tree traversal, 

• each tree node is accessed only once, therefore the consumption of system 
resources is reduced, 

• the method not only reports the time instances when there is a change in the 
result, but also the time instances when there is a change in the order of the 
nearest neighbors in the current result. 

The challenge is to determine the k nearest neighbors of a given moving 
query point P, a query velocity vector vp and a time interval [tg, ie]- We want 
to answer such a query, by performing only one search, thus avoiding posing 
repetitive queries to the database. The answer to the query is a set of mutually 
exclusive time intervals, and a sorted list of object IDs for each time interval, 
which are the k nearest neighbors of P for the respective time interval. 

By assuming that the distance between two points is determined by the dis­
tance measure, the distance Dp^Q (t) between query P and object Q as a function 
of time is given by the following equation: 

Dp,Q{t) = y/ci-f^ + C2-t + C3 (5.1) 

where cj, C2, C3 are constants given by: 

c\ = {vqx - vpxf + {vqy - vpyf 
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C2 = 2 • [{Qx - Px) • {vqx - vpx) + {Qy - Py) • {vqy - vpy)] 

C3 = (Qx - Px? + {Qy - Py? 

vQx, vqy are the velocities of object Q, vpx, vpy are tlie query point velocities 
in each dimension, whereas {Qx, Qy), {Px, Py) are the reference positions of 
the object Q and the query P respectively. In the sequel, we assume that the 
distance is given by {Dp^Q{t))^ to perform simpler calculations. 

The movement of an object with respect to the query is visualized by plotting 
the function {Dp^Q{t))'^, as illustrated in Figure 5.3. For NN query processing 
the distance from the query point contains all the necessary information, since 
the exact object position is irrelevant. Note that since ci > 0 the plot of the 
function always has the shape of a "valley'. 

I I < I I 

0 1 2 3 4 5 6 7 8 9 10 t 

Figure 5.3. Visualization of the distance between a moving object and a moving query. 

D"D 

te t 

Figure 5.4. Relative distance of objects with respect to a moving query. 

Assume that we have a set of moving objects Q and a moving query point P. 
The objects and the query are represented as points in a multidimensional space. 
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Although the proposed method can be appUed to any number of dimensions, 
the presentation is restricted to 2-d space for clarity and convenience. Moving 
queries and objects are characterized by their reference positions and velocity 
vectors. Therefore, we have all the necessary information to define the distance 
(Dp_Q (i))^ for every object g G Q. By visualizing the relative object movement 
during [t^, tg] a graphical representation is derived, such as the one depicted in 
Figure 5.4. 

By inspecting Figure 5.4 we obtain the A; nearest neighbors of the moving 
query during the time interval [tg, ig] • For example, for fc = 2 the nearest neigh­
bors of P for the time interval are contained in the shaded area of Figure 5.4. 
The nearest neighbors of P for various values of k along with the corresponding 
time intervals are depicted in Figure 5.5. The pair of objects above each time 
point tx declare the objects that have an intersection at t^. These time points 
where a modification of the result is performed, are called split points. Note 
that not all intersection points are split points. For example, the intersection 
of objects a and c in Figure 5.4 is not considered as a split point for A; = 2, 
whereas it is a split point for A; = 3. 

aRb aRd bfld bflc 

.<.a-».< b >.< b > - < — d — • • d . * . 
b a d b e 

cRd aflb aRd aflc bRd bflc 

'' ' ' ' ^ . '^ . '^ . ' = . ' « . '<• 

a a b b b d d 
*b-«-^b—•"< a •-• d ^ d - » ^ b - ^ * c * 

c d d a c c b 

Figure 5.5. Nearest neighbors of the moving query for A; = 2 (top) and fc = 3 (bottom). 

The previous example demonstrates that the k nearest neighbors of a moving 
query can be determined by using the functions that represent the distance of 
each moving object with respect to the moving query. Based on the previous 
discussion, the next section presents the design of an algorithm for NN query 
processing (NNS) which operates on moving objects. 

3.1 The NNS Algorithm 
The NNS algorithm consists of two parts, which are described separately: 

• NNS-a algorithm: given a set of moving objects, a moving query and a time 
interval, the algorithm returns the k nearest neighbors for the given interval, 
and 
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• NNS-b algorithm: given the k nearest neighbors, the corresponding time 
intervals, and a new moving object, the algorithm computes the new result. 

3.1.1 Algorithm NNS-a 

We are given a moving query point P, a set Qof N moving objects, a time 
interval [ig,te], whereas the k nearest neighbors of P are requested. The target 
is to partition the time interval into one or more sub-intervals, in which the list 
of nearest neighbors remains unchanged. Each time sub-interval is defined by 
two time split points, declaring the beginning and the sub-interval end. During 
the calculation, the set Q is partitioned into three sub-sets: 

• the set /C, which always contains k objects that are currently the nearest 
neighbors of P, 

• the set C, which contains objects that are possible candidates for subsequent 
time points, and 

• the set TZ, which contains rejected objects whose contribution to the answer 
is impossible for the given time interval [tg, te]. 

Initially, )C = 0, C = O, and 7?. = 0. The first step is to determine the k 
nearest neighbors for time point tg. By inspecting Figure 5.4 for fc = 2 we get 
that these objects are a and b. Therefore, /C = {a, b}, C = {c, d, e} and 7?. = 0. 
Next, for each o e /C the intersections with objects in IC + C are determined. 
If there exist any objects in C that do not intersect any objects in /C, they are 
removed from C and are put in TZ, meaning that they will not be considered 
again (Proposition 5.1). In our example, object e is removed from C and we 
have K. — {a,b},C — {c,d} and 7^ = {e}. The currently determined inter­
sections are kept in an ordered list, in increasing time order. Each intersection 
is represented as {t^, {u, v}), where t^ is the time point of the intersection and 
{u, v} are the objects that intersect at tx. 

Proposition 5.1 
Moving objects that do not intersect the k nearest neighbors of the query at time 
tg, can be rejected. 

Proof 
An intersection between oi and 02 denotes a change in the result. Therefore, if 
none of the k nearest neighbors intersect any other object between [ts, 4 ] , there 
will be no change in the result. This means that we do not have to consider 
other objects for determining the nearest neighbors. • 

Each intersection is defined by two objects u and v. If three or more ob­
jects intersect at the same point t^ the conflict is resolved by evaluating the 
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first derivative for each object at t^ and talcing the minimum value. The cur­
rently determined intersection points comprise the current list of time split 
points. According to the example, the split point Ust has as follows: (ii, {a, b}), 
(i2, {a, d}), {tx, {a, c}), (ts, {b, d}), {t^, {b, c}). For each intersection we dis­
tinguish between two cases: 

m u E )C and v G K. 

m u £ K. and v £ C (OT u G C and v E K.) 

In the first case, the current set of nearest neighbors does not change. However, 
the order of the currently determined objects changes, since two objects in /C 
intersect, and therefore they exchange their position in the ordered list of nearest 
neighbors. Therefore, objects u and v exchange their position. In the second 
case, object v is inserted into K. and therefore the list of nearest neighbors must 
be updated accordingly (Proposition 5.2). 

Proposition 5.2 
Let us consider a split point at time tx, at which objects oi and 02 intersect. If 
oi G /C and 02 G C then at t^, oi is the A;-th nearest neighbor of the query. 

Proof 
Assume that 01 is not the k-th nearest neighbor at the intersection time. How­
ever, oi belongs to the result (is among the k nearest neighbors) at time tx-
The intersection at time tx denotes that objects 01 and 02 are consecutive in 
the result. This implies that 02 is already contained in the current result (set 
JC) which contradicts our assumption that 02 is not contained in the result set. 
Therefore, object 01 must be the A;-th nearest neighbor of the query. • 

According to the currently determined split points, the first split point is ti, 
where objects a and b intersect. Since both objects are contained in /C, no new 
objects are inserted into /C, and simply objects a and b exchange their position. 
Up to this point concerning the sub-interval [ts, h) the nearest neighbors of P 
are a and b. We are ready now to check the next split point, t2, where objects 
a and d intersect. Since a £ /C and d e C object a is removed from /C and 
inserted into C. On the other hand, object d is removed from C and inserted 
into /C taking the position of a. Up to this point, another part of the answer has 
been determined, since in the sub-interval [ti,i2) the nearest neighbors of P 
are b and a. Moving to the next intersection, t^, we see that this intersection is 
caused by objects a and c. However, neither of these objects is contained in /C. 
Therefore, we ignore tx and remove it from the list of time split points. Since a 
new object d has been inserted into /C, we check for new intersections between 
d and objects in /C and C. No new intersections are discovered, and therefore 
we move to the next split point ^3. Currently, for the time sub-interval [̂ 2, ^3) 
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the nearest neighbors of P are & and d. At is objects h and d intersect, and this 
causes a position exchange. We move to the next split point t^ where objects 
h and c intersect. Therefore, object h is removed from K, and inserted into C, 
whereas object c is removed from C and inserted into /C. Since c does not have 
any other intersections with objects in K and C, the algorithm terminates. The 
final result is depicted in Figure 5.5, along with the corresponding result for 
/c = 3. The method outline is illustrated in Figure 5.6. 

Algorithm NNS-a 
Input: a set of moving objects O, a moving query point P, 
time interval [ts, te]. the number k of requested >JNs 
Output: a list of elements of the form ([ti, t2]iOi,02i •••,Ofc) 
where oi,..., ô , are the NNs of P from ti to t2 (CNN-list), 
split-list containing the split points 
Local: fc-list containing the current NNs 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 

initialize A: = 0, C = C>, and 7^ = 0 
initialize split-list with split points ts and te 
find the k NNs of P at time point ts 
update fe-list 
foreach ti 6 /C do 

find intersections with -y G /C 
find intersections with D € C 
update split Ust 
move irrelevant objects from C to 71 

endfor 
while more split-points are available do 

check next time split point t̂ , (intersection) 
i f («e IQsmAiv 6 K) then 

update CNN-list 
exchange positions in fc-list 

endif 
if (u 6 K.) and (v € C) then 

move u from KtoC 
move V from CtolC 
update fc-list 
update CNN-list 
if (v participates for the first time in fc-Ust) then 

determine intersections oiv with objects in C 
update split-list 

endif 
endif 
if (u 6 C) and (v 6 C) then 

ignore spUt point t i 
endif 

endwhile 
return CNN-list, split-list 

Figure 5.6. The NNS-a algorithm. 

Each object o G /C is responsible for a number of potential time split points, 
which are defined by the intersections of o and the objects contained in C. 
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Therefore, each time an object is inserted into /C intersection checks must be 
performed with the objects in C. In order to reduce the number of intersection 
tests, if an object was previously inserted into /C and now it is reinserted, it is not 
necessary to recompute the intersections. Moreover, according to Proposition 
5.3, intersections at time points prior to the currently examined split point can 
be safely ignored. 

Proposition 5.3 
If there is a split point at time t^, where o\ E K. and 02 G C intersect, all 
intersections of 02 with the other objects in /C that occur at a time before tx are 
not considered as split points. 

Proof 
This is evident, since the nearest neighbors of the query object up to time tx have 
been already determined and therefore the intersections at time points prior to 
tx do not denote a change in the result. D 

Evidently, to determine if two objects u and v intersect at some time point 
between tg and te, we have to solve an equation. Let the square of the distance 
between P and the objects be described by the functions 

Du,q{tf =Ui-t^ + U2-t + Uz 

and 

Dv,q{tf =Vl-t^+V2-t + Vi 

respectively. In order for the two object to have an intersection in [ts, te] there 
must be at least one value tx, where ts <tx < te such that: 

(Ul - Vi) • tl + (M2 - W2) • tx + (M3 -V3) = 0 

From elementary calculus it is known that this equation can be satisfied by none, 
one, or two values of tx. If 

(M2 - •^2)^ - 4 • (MI - vi) • (M3 -V3) <0 

then there is no intersection between u and v. If 

(U2 - V2)'^ - 4 • (wi - Vl) • (M3 - WS) = 0 

then the two objects intersect at 

t = - ( M 2 - '̂ 2̂) 
2 • (wi - Vl) 
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Otherwise the objects intersect at two points t^ and ty given by: 

^T, 

ty 

-(U2 - V2) + \/{u2 - V2Y - 4 • (MI - Vi) • (M3 - Vj) 

2- (MI -VX) 

-(M2 - V2) — \/{u2 - V2Y - 4 • (MI - t;i) • (M3 - M3) 

2 - (MI - u i ) 

3.1.2 Algorithm NNS-b 

After the execution of NNS-a, the CNN-list is formulated, which contains 
elements of the form ([^1,^2]! 01,02,..., o/.), where oi,..., o/. are the nearest 
neighbors of P from ii to t2, in increasing distance order. Let <S be the set 
containing the nearest neighbors of P at any given time between t^ and tg. 
Clearly, k < \S\ < \0\. Assume now that we have to consider another object 
w, which was not known during the execution of NNS-a. We distinguish among 
the following cases, which describe the relation of w to the current answer: 

case 1: w does not intersect any of the objects in <S between tg and te, and 
lies "above" the area of relevance. In this case, w is ignored, since it can 
not contribute to the nearest neighbors. The number of split points remains 
the same. 

case 2: w does not intersect any of the objects in <S between tg and t^, and 
lies completely "inside" the area of relevance. In this case w must be taken 
into account, since it affects the answer from tg to t^ (Proposition 5.4). The 
number of split points may be reduced. 

case 3: w intersects at least one object u e <S at time tg <tx <te, but at time 
tx V is not contained in the set of nearest neighbors. In this case, again w is 
ignored, since this intersection can not be considered as a split point because 
the answer is not affected. Therefore, no new split points are generated. 

case 4: w intersects at least one object u G <S at time tg <tx <te, and object 
V is contained in the set of nearest neighbors at time t^. In this case w must 
be considered because at least one new split point is generated. We note, 
however, that some of the old split points may be discarded. 

Proposition 5.4 
Assume that a new object w does not intersect any of the nearest neighbors 
from ts to tg. If at time tg its position among the k nearest neighbors is pos^, 
then it maintains this position throughout the query duration. 

Proof 
Assume that there is a change in the result at some point t^, where object w 
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changes its position among the nearest neighbors. This implies that there is 
an intersection at time t^, since only an intersection denotes a result change. 
This contradicts our assumption that there are no intersections of w with other 
objects in the result. D 
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Figure 5.7. The four different cases that show the relation of a new object to the current nearest 
neighbors. 

The aforementioned cases are depicted in Figure 5.7. Object e corresponds 
to case 1, since it is above the area of interest. Object / corresponds to case 
2, because it is completely covered by the relevant area. Object g although 
intersects some objects, the time of these intersections are irrelevant to the 
answer, and therefore the situation corresponds to case 3. Finally, object h 
intersects a number of objects at time points that are critical to the answer and 
therefore corresponds to case 4. 

The outline of the NNS-b algorithm is presented in Figure 5.8. Note that 
in lines 14 and 20 a call to the procedure modify-CNN-list is performed. This 
procedure, takes into consideration the CNN-list and the new split-list that is 
generated. It scans the split-list in increasing time order and performs the 
necessary modifications to the CNN-list and the split-list. Some split-points 
may be discarded during the process. The procedure steps are illustrated in 
Figure 5.9. 

3.2 Query Processing with TPR-trees 
Having described in detail the query processing algorithms in the previous 

section we are ready now to elaborate in the way these methods are combined 
with the TPR-tree. Let T be a TPR-tree which is built to index the underlying 
data. Starting from the root node of T the tree is searched in a depth-first-search 
manner (DFS). However, the proposed methods can also be combined with a 
breadth-first-search based algorithm. The first phase of the algorithm is com-
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Algorithm NNS-b 
Input: a list of elements of the form ([*i, t2] ,o i , 02, ...,o^;) 
where 01, ...,ojc are the NNs of P from t i tot2 (CNNlist), 
a new object w, the split-list 
Output: an updated list of the form ([<i, t2 ] ,o i ,02 , ...,0;,) 
where 01, ...,Ofc arethe>fNs of Pfrom t i to t2 (CNNlist) 
Local: k-]ist current list of NNs, 
split-list, the current list of split points 
1. initialize S = union of NNs from ts to te 
2. intersectionFlag = FALSE 
3. foreach s e S do 
4. check intersection between s and w 
5. if (s and w intersect) then // handle cases 3 and 4 
6. intersectionFlag = TRUE 
7. collect all tj, s II tj is where w and s intersect 
8. if (at tj object s contributes to the NNs) then 
9. update split-list 
10. endif 
11. endif 
12. endfor 
13. if (intersectionFlag == TRUE) then 
14. call modify-CNN-list 
15. else // handle cases 1 and 2 

-^q^wy 16. 
17. i f ( D , , „ ( t , ) 2 > D ^ j v j v ) t h e n 
18. ignore lu 
19. else 
20. call modify-CNN-list 
21. endif 
22. endif 
23. return CNN-list, split-list 

Figure 5.8. The NNS-b algorithm. 

pleted when m > k objects have been collected from the dataset. Tree branches 
are selected to descent according to the MINDIST metric [106] (Definition 
1) between the moving query and bounding rectangles at time t^. These m 
moving objects are used as input to the NNS-a algorithm to determine the result 
from tg to te. Therefore, up to now we have a first version of the split-list and 
the CNN-list. However, other relevant objects may reside in leaf nodes of T 
that are not yet examined. 

Definition 5.1 
Given a point p at (pi, P2 ,-••!?«) and a rectangle r whose lower-left and upper-
right corners are (si, S2,..., s„) and(ti, ^2, ...,i„), the distance M/A''D/S'T(p, r) 
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Procedure modify-CNN-list 
Input: a list of elements ([ii, *2]) 01,02, •••,Ofc) 
where 01,..., oj. are the NNs of P from ti to ±2 (CNN list), 
a new object w, the split-list 
Output: an updated list of elements ([<i, t2],oi, 02, ...jOit) 
where oj , . . . , ojt are the NNs of P from ti to t2 (CNN list) 
Local: fc-list current list of NNs 
1. calculate D,,™ (t)^ at time point ts 
2. consult CNN-list and update the current fc-list 
3. while more split-points are available do 
4. check next split-point (tx, {«, v}) 
5. update CNN-list 
6. if (« ^ fc — list) and (i) ^ fc — iist) then 
7. remove split-point (ia;, {u, v}) 
8. elseif (« 6 fc — list) and (D ^ fc — iist) then 
9. remove u from fc-list 
10. insert v in fc-list 
11. update fc-list 
12. elseif (ii 6 fc — /ist) and {u ^ k — list) then 
13. remove D from fc-list 
14. insert u in fc-list 
15. update fc-Hst 
16. else 
17. exchange positions between u and n 
18. update fc-Ust 
19. endif 
20. endwhile 

Figure 5.9. The modify-CNN-list procedure, 

is defined as follows: 

MINDIST(j>, r) = 12 

where: 

Pj, otherwise 

D 

In the second phase of the algorithm, the DFS continues searching the tree, 
by selecting possibly relevant tree branches and discarding non-relevant ones. 
Every time a possibly relevant moving object is reached, algorithm NNS-b is 
called to update the split-list and the CNN-list of the result. The algorithm 
terminates when there are no relevant branches to examine. 
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Figure 5.10. Praning techniques. 

In order to complete the algorithm description, the terms possibly relevant 
tree branches and possibly relevant moving objects must be clarified. In other 
words, the praning strategy must be described in detail. Figure 5.10 illustrates 
two possible praning techniques that can be used to determine relevant and 
non-relevant tree branches and moving objects: 

Pruning Technique 1 (PTl): According to this technique we keep track of 
the maximum distance MAXDIST between the query and the current set 
of nearest neighbors. In Figure 5.10(a) this distance is defined between 
the query and object h at time tstart- We formulate a moving bounding 
rectangle R centered at P with extends MAXDIST in each dimension 
and moving with the same velocity vector as P. If R intersects a bounding 
rectangle E in an internal node, the corresponding tree branch may contain 
objects that contribute to the answer and therefore must be examined further. 
Otherwise, it can be safely rejected since it is impossible to contain relevant 
objects. In the same manner, if a moving object o^ found in a leaf node 
intersects R it may contribute to the answer, otherwise it is rejected. 

Pruning Technique 2 (PT2): This technique differs from the previous one 
with respect to the granularity level, where moving bounding rectangles are 
formulated. Instead of using only one bounding rectangle, a set of bound­
ing rectangles is defined according to the currently determined split points. 
Note that it is not necessary to consider all split points, but only these that 
are defined by the A;-th nearest neighbor in each time interval. An example 
set of moving bounding rectangles is illustrated in Figure 5.10(b). Each 
internal bounding rectangle and moving object is checked for intersection 
against the whole set of moving bounding rectangles and it is considered 
relevant only if it intersects at least one of them. 
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Other pruning techniques can also be determined by grouping split points 
to keep the balance between the number of generated bounding rectangles and 
the existing empty space. Several pruning techniques can be combined in a 
single search by selecting the preferred technique according to some criteria 
(e.g., current number of split-points, existing empty space). 

It is anticipated that PTl will be more efficient with respect to CPU time, 
but less efficient concerning I/O time, because the empty space will cause 
unnecessary disk accesses. On the other hand, PT2 seems to incur more CPU 
overhead due to the increased number of intersection computations, but also 
less I/O time owing to the detailed pruning performed. Based on the above 
discussion, we define the NNS-CON algorithm which operates on TPR-trees 
and can be used with either of the two pruning techniques. The algorithm 
outline is illustrated in In Figure 5.11. 

Algorithm NNS-CON 
Input: the TPR-tree root, 

a moving query P, 
the number k of NNs 

Output: the fc NNs in [is, t<j] 
Local: a set O of collected objects, 

Flag is FALSE if NNS-a has not yet been called 
number col of collected objects 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12, 
13. 
14. 
15. 
16. 
17. 

if (node is LEAF) then 
if (\0\ < k) then 

add each entry of node to O 
update \0\ 

endif 
if (\0\ > k) and (Flag == FALSE) then 

caU NNS-a 
set Flag=TRUE 

elseif (|C>| > k) and (Flag == TRUE) then 
apply pruning technique 
for each entry of node call NNS-b 

endif 
elseif (node is INTERNAL) then 

apply pruning technique 
sort entries of node wrt MINDIST at ts 
call NNS-CON recursively 

endif 

Figure 5.11. The NNS-CON algorithm. 

4. Performance Evaluation 
4.1 Preliminaries 

In the sequel, a description of the performance evaluation procedure is given, 
aiming at providing a comparison study among the different processing meth-
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ods. The methods under consideration are: i) the AW5'-COA/̂  algorithm enabled 
by Pruning Technique 1 described in the previous section, and ii) the NNS-REP 
algorithm which operates by posing repetitive NN queries to the TPR-tree [130]. 
Both algorithms as well as the TPR-tree access method have been implemented 
in the C programming language. 

Parameter Value 

database size, A'' 

space dimensions, d 

data distribution, D 

number of NNs, k 

travel time, Uravei 

LRU buffer size, B 

lOK, 50K, lOOK, IM 

1,2,3 

uniform, gaussian 

1-100 

26 -1048 sec. 

0.1% - 20% of tree pages 

Table 5.2. Parameters and corresponding values. 

There are several parameters that contribute to the method performance. 
These parameters, along with their respective values assigned during the exper­
imentation are summarized in Table 5.2. 

The datasets used for the experimentation are synthetically generated using 
the uniform or the gauss distribution. The dataspace extends are 1,000,000 x 
1,000,000 meters and the velocity vectors of the moving objects are uniformly 
generated, with speed values between 0 and 30 m/sec. Based on these objects, 
a TPR-tree is constructed. The TPR-tree page size is fixed at 2Kbytes. 

The query workload is composed of 500 uniformly distributed queries having 
the same characteristics (length, velocity). The comparison study is performed 
by using several performance metrics, such as: i) the number of disk accesses, 
ii) the CPU-time, iii) the FO time and iv) the total running time. In order to 
accurately estimate the I/O time for each method a disk model is used to model 
the disk, instead of assigning a constant value for each disk access [108]. Since 
the usage of a buffer plays a very important role for the query performance we 
assume the existence of an LRU buffer with size varying between 0.1% and 
20% of the database size. 

The results presented here correspond to uniformly distributed datasets. Re­
sults performed for gaussian distributions of data and queries demonstrated 
similar performance and therefore are omitted. The main difference between 
the two distributions is that in the case of the gaussian distribution, the algo-
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rithms require more resources since the data density increases and therefore 
more split-points and distance computations are needed to evaluate the queries. 

4.2 Experimental Results 
Several experimental series have been conducted to test the performance of 

the different methods. The experimental series are summarized in Table 5.3. 

Experiment Varying Parameter Fixed Parameters 

EXPl NNs,/c 
N = 1M, 
B = 10%, 
ttravsl = 1 1 0 s e c . 

d = 2, £'=uniform 

EXP2 buffer size, B 
N = 1M, 
k = 5, 
ttravsl = 1 1 0 s e c . 

d = 2, £'=uniform 

EXP3 travel time, ttravei 
N = 1M, 
fc = 5, 
B = 10%, 
d = 2, r'=uniform 

EXP4 
space dimensions, d 
NNs, fc 

N = IM, 
B = 10%, 

ttr ave 

i = 110 sec. 
i3=uniform 

EXP5 
database size, A'' 
NNs, fc 

B = 500 pages, 
d=2, 
i5=uniform, 
ttravei = 1 1 0 SCC. 

Table 5.3. Experiments conducted. 

The purpose of the first experiment (EXPl) is to investigate the behavior of 
the methods for various values of the requested nearest neighbors. The corre­
sponding results are depicted in Figure 5.12. By increasing k, more split points 
are introduced for the NNS-CON method, whereas more influence calculations 
are needed by the NNS-REP method. It is evident that NNS-CON outperforms 
significantly the NNS-REP method. Although both methods are highly affected 
by k, the performance of NNS-REP degrades more rapidly. As Figure 5.12(a) 
illustrates, NNS-REP requires a large number of node accesses. However, since 
there is a high locality in the page references performed by a query, the page 
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faults are limited. As a result, the performance difference occurs due to the 
increased CPU cost required by NNS-REP (Figure 5.13). Another interest­
ing observation derived from Figure 5.13 is that the CPU cost becomes more 
significant than the I/O cost by increasing the number of nearest neighbors. 
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Figure 5.12. Results for different values of the number of nearest neighbors. 
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Figure 5.13. CPU cost over I/O cost. 

The next experiment (EXP2) illustrates the impact of the buffer capacity 
(Figure 5.14). Evidently, the more buffer space is available the less disk accesses 
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are required by both methods. It is interesting that although the number of 
node accesses required by NNS-REP is very large, (see Figure 5.12(a)) the 
buffer manages to reduce the number of disk accesses significantly due to buffer 
hits. However, even if the buffer capacity is limited, NNS-CON demonstrates 
excellent performance. 

..' ! 

" - - \ 
r • • « • -

- •a 

0.0625 0.125 0.25 0.5 1 2 4 8 16 32 
Butter size (paresnlage of db size) 

Figure 5.14. Results for different buffer capacities. 

Experiment EXP3 demonstrates the impact of the travel time on the perfor­
mance of the methods. The corresponding results are depicted in Figure 5.15. 
Small travel times are favorable for both methods, because less CPU and I/O op­
erations are required. On the other hand, large travel times increase the number 
of split-points and the number of distance computations, since the probability 
that there is a change in the result increases. However, NNS-CON performs 
much better for large travel times in contrast to NNS-REP whose performance 
is affected significantly. 

The next experiment (EXP4) demonstrates the impact of the space dimen­
sionality. The increase in the dimensionality has the following results: i) the 
database size increases due to smaller tree fanout, ii) the TPR-tree quality de­
grades due to overlap increase in bounding rectangles of internal nodes, and iii) 
the CPU cost increases because more computations are required for distance 
calculations. Both methods are affected by the dimensionality increase. How­
ever, by observing the relative performance of the methods (NNS-REP over 
NNS-CON) in 2-d and 3-d space illustrated in Figure 5.16, it is realized that 
NNS-REP is affected more significantly by the number of space dimensions. 

Finally, Figure 5.17 depicts the impact of database size (EXP5). In this 
experiment, the buffer capacity is fixed at 500 pages, and the number of moving 
objects is set between 10,000 and 100,000. The number of requested nearest 
neighbors is varying between 1 and 15, whereas the travel time is fixed at 110 
sec. By increasing the number of moving objects, more tree nodes are generated 
and, therefore, more time is needed to search the TPR-tree. Moreover, by 
keeping the buffer capacity constant, the buffer hit ratio decreases, producing 
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Figure 5.16. Results for different space dimensions. 

more page faults. As Figure 5.17 illustrates, the performance ratio {NNS-REP 
over NNS-CON) increases with the database size. 

5. Summary 
Applications that rely on the combination of spatial and temporal object 

characteristics demand new types of queries and efficient query processing 
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Figure 5.17. Results for dififerent database size. 

techniques. An important query type in such a case is the k nearest neighbor 
query, which requires the determination of the k closest objects to the query 
for a given time interval [ts, te\. The major difficulty in such a case is that both 
queries and objects change positions continuously, and therefore the methods 
that solve the problem for the static case can not be applied directly. 

In this chapter, we performed a study of efficient methods for NN query 
processing in moving-object databases, and several performance evaluation ex­
periments to compare their efficiency. The main conclusion is that the proposed 
algorithm outperforms significantly the repetitive approach for different param­
eter values. Future research may focus on: 

• extending the algorithm to work with moving rectangles (although the ex­
tension is simple, the algorithmic complexity increases due to more distance 
computations), 

• providing cost estimates concerning the number of node accesses, the num­
ber of intersection checks and the number of distance computations, and 

• adapting the method to operate on access methods which store past positions 
of objects (trajectories) to answer past queries. 

6. Further Reading 
Many research efforts have focused on indexing schemes and efficient pro­

cessing techniques for moving-object datasets [4, 37, 54, 110, 124, 136]. In­
dexing and query processing for past positions of objects are addressed in many 
research works such as [66, 81,100,129,146]. Indexing issues for present and 
future positions of objects are addressed in [4,44,47, 53, 54, 60, 77,110,144]. 

Recently, there is an interest in indexing and query processing for moving 
objects whose movement is constraint by an underlying spatial network (e.g., a 
road network, a railway network). Some important research results in the issue 
have been reported in [91, 117, 120]. 
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Chapter 6 

PARALLEL AND DISTRIBUTED DATABASES 

1. Introduction 
One of the primary goals in database research is the investigation of innova­

tive techniques in order to provide more efficient query processing. This goal 
becomes much more important considering that modern applications are more 
resource demanding, and are usually based on multiuser systems. A database re­
search direction that has been vi'idely accepted by developers is the exploitation 
of multiple resources (e.g., processors,disks) towards more efficient processing. 

The exploitation of multiple computer resources can be performed by using 
either a parallel database system or a distributed database system. Although 
there are several similarities between these two approaches, there are also some 
fundamental differences. Examples of the two approaches are given in Figure 
6.1. 

Back-End Parallel System 

(a) parallel database system (b) distributed database system 

Figure 6.1. Parallel and distributed database systems. 

15 
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In a parallel database system, usually the processors are tightly coupled in 
a single computer system. However, in some cases (e.g., networks of work­
stations) processors are loosely coupled and reside in different machines. Pro­
cessors cooperate to provide efficient query processing. The user is not aware 
of the parallelism, since she has no access to a specific processor of the sys­
tem. According to the parallel architecture, the processors may have access to 
a common memory, or they can communicate by message passing. In the latter 
case the processor interconnection is achieved by means of high-speed links. 
Parallelism can be categorized in: 

• CPU parallelism: A task is partitioned to several processors for execution 

• I/O parallelism: The data are partitioned to several secondary storage units 
(disks or CD-ROMs) to achieve better I/O performance. 

Distributed database systems are usually loosely coupled and are composed 
by independent machines. Moreover, each machine is capable of running its 
own applications and serve its own users. Data are partitioned to the different 
machines, and therefore several machines should be accessed to answer a user 
query. Due to the loosely coupled approach, the network communication cost 
is significant and should be taken into consideration. Specialized algorithms 
for distributed query processing, distributed query optimization and distributed 
transaction support have been proposed to provide efficient access to physically 
distributed data. As in the case of parallel database systems, a distributed 
database system should provide distribution transparency. In other words, users 
and applications need not worry about the data distribution. The distributed 
DBMS is responsible to deliver the appropriate data from remote hosts. 

2. Multidisk Systems 
Generally, in a database system the data collection resides on disk unit(s). 

In addition, the index that is used to provide access to the data is also stored on 
disk. In some cases the index size is small enough to be maintained in main-
memory. However, a database system usually manages more than one indexes 
and therefore it is not possible to keep all of them in-core. Since generally an 
index is stored on disk, one of the I/O technologies that have affected access 
method design is the disk array. A disk array is composed of two or more disks, 
each one containing different database parts. 

Using more than one disk devices leads to increased system throughput, since 
the workload is balanced among the participating disks and many operations 
can be processed in parallel. RAID systems have been introduced in [99] as an 
inexpensive solution to the I/O bottleneck. Using more than one disk devices, 
leads to increased system throughput, since the workload is balanced among the 
participating disks and many operations can be processed in parallel [19, 20]. 
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A typical layout of a disk array architecture is illustrated in Figure 6.2, where 
four disks are attached to a processor. 

Figure 6.2. Example of disk array architecture. 

Given a multidisk architecture, one faces the problem of partitioning the data 
and the associated access information to take advantage of the I/O parallelism. 
The way data are partitioned reflects the performance of read/write operations. 
The declustering problem attracted many researchers and a lot of work has 
been performed towards taking advantage of the I/O parallelism, to support 
data intensive applications. Techniques for B+-tree declustering have been 
reported in [113]. In [149] the authors study effective declustering schemes 
for the grid file structure, whereas parallel M-trees are studied in [147]. Here 
we focus on the R-tree access method. The challenge is to decluster an R-tree 
structure among the available disks to: 

1 distribute the workload during query processing as evenly as possible among 
the disks, and 

2 activate as few disks as possible. 

There are several alternative designs that could be followed to take advantage 
of the multiple disk architecture. These alternatives have been studied in [48], 
and are briefly discussed below: 

Independent R-trees 
The data are partitioned among the available disks, and an R-tree is build for each 
disk (see Figure 6.3). The performance depends on how the data distribution is 
performed: 

• data distribution: The data objects are assigned to different disks in a round-
robin manner, or by using a hash function. This method guarantees that each 
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disk will host approximately the same number of objects. However, even 
for small queries, all disks are likely to be activated to answer the query. 

• space distribution: The space is divided to d partitions, where d is the 
number of available disks. The drawback of this approach is that due to the 
non-uniformity of real-life datasets, some disks may host a greater number of 
objects than other disks, and therefore may become a bottleneck. Moreover, 
for large queries (large query regions) this method fails to balance the load 
equally among all disks. 

Figure 6.3. Independent R-trees. 

R-tree with Super Nodes 
This alternative uses only one R-tree (see Figure 6.4). The exploitation of the 
multiple disks is obtained by expanding each tree node. More specifically, the 
logical size of the tree node becomes d times larger, and therefore each node is 
partitioned to all d disks (disk stripping). Although the load is equally balanced 
during query processing, all disks are activated in each query. This happens 
because since there is no total order of the rectangles (MBRs) that are hosted in 
a tree node, each node must be reconstructed by accessing all the disks (each 

Figure 6.4. R-tree with super-nodes. 
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node is partitioned among all disks). 

Multiplexed (MX) R-tree 
This alternative uses a single R-tree, having its nodes distributed among the 
disks. The main difference with an ordinary R-tree is that interdisk pointers 
are used to formulate the tree structure. Each node pointer is a pair of the form 
< diskID,pageID >, where diskID is the disk identifier containing the page 
pagelD. An example MX R-tree with 13 nodes distributed in 3 disks is given 
in Figure 6.5. The number near each node denotes the disk where the node 
resides. 

UT TTT TTTTTT TTT TT 
detailed description of objects 

Figure 6.5. MX R-tree example. 

The main issue that must be explained is the node-to-disk assignment policy. 
The insertion of new objects will cause some nodes to split. The problem is 
to which disk the newly created node iV„ will be assigned, and the target is to 
minimize the query response time. In order to obtain the best result, we could 
examine all nodes that lie in the same tree level. However, this operation is very 
costly because it results in many FO operations. Instead, only the sibling nodes 
are examined, i.e. the nodes that have the same parent with A'„. Moreover, it is 
not necessary to fetch the sibling nodes, since the information that we require 
(MBRs) resides in the parent node (which has been fetched already in memory 
to insert the new object). There are several criteria that could be used to perform 
the placement of the new node Nn'-

• data balance: In the best case, all disks must host the same number of 
tree nodes. If a disk contains more nodes than the others, it may become a 
bottleneck during query processing. 

area balance: The area that each disk covers plays a very important role 
when we answer range queries. A disk that covers a large area, will be 
accessed with higher probability than the others, and therefore it may become 
a bottleneck. 
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• proximity: If two nodes are near in space, the probability that they will be 
accessed together is high. Therefore, proximal nodes should be stored to 
different disks to maximize parallelism. 

Although it is very difficult to satisfy all criteria simultaneously, some heuris­
tics have been proposed to attack the problem: 

• round-robin: The new node is assigned to a disk using the round-robin 
algorithm. 

• minimum area: This heuristic assigns the new node to the disk that covers 
the smallest area. 

• minimum intersection: This heuristic assigns the new node to a disk trying 
to minimize the overlap between the new node and the nodes that are already 
stored in this disk. 

• proximity index: This heuristic is based on the proximity measure which 
compares two rectangles and calculates the probability that they will be ac­
cessed together by the same query. Therefore, rectangles (which correspond 
to tree nodes) with high proximity must be stored in different disks. 

Several experimental results have been reported in [48]. The main conclu­
sion is that the MXR-tree with the proximity index method for node-to-disk 
assignment outperforms the other methods. The performance evaluation has 
been conducted by using uniformly distributed spatial objects and uniformly 
distributed range queries. The proposed method manages to activate few disks 
for small range queries, and activate all disks for large queries, achieving good 
load balancing, and therefore can be used as an efficient method for paralleliz­
ing the R-tree structure. It would be interesting to investigate the performance 
of the method for non-uniform distributions. 

The MXR-tree access method is used in Chapter 7 to support NN query 
processing in a multidisk system. The branch-and-bound nature of the funda­
mental NN algorithm leads to decreased parallelism exploitation. Therefore, 
new algorithms are required that could take advantage of the multiple disk units 
in a more efficient way. 

3. Multiprocessor Systems 
The design of algorithms for multiple resource exploitation is not a triv­

ial task. Although in some cases the parallel version of a serial algorithm 
is straightforward, one must look carefully at three fundamental performance 
measures: 

1 speed-up: The speed-up measure shows the capability of the algorithm 
when the number of processors is increased and the input size is constant. 
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The perfect speed-up is the linear speed-up, meaning that if T seconds are 
required to perform the operation with one processor, then T/2 seconds are 
required to perform the same operation using two processors. 

2 size-up: Size-up shows the behavior of the algorithm when the input size is 
increased and the number of processors remains constant. 

3 scale-up: Finally, scale-up shows the performance of the algorithm when 
both the input size and the number of processors are increased. 

There are three basic parallel architectures that have been used in research 
and development fields (see Figure 6.6): 

• shared everything: All processors share the same resources (memory and 
disks), whereas the communication among processors is performed by means 
of the global memory. 

• shared disk: All processors share the disks but each one has its own memory. 

• shared nothing: The processors use different disks and different memory 
units, whereas the communication among processors is performed using 
message passing mechanisms. 

shared everything 

Figure 6.6. Parallel architectures. 

As in a multidisk system, in a multiprocessor system several issues must be 
taken into consideration to guarantee acceptable performance. In the sequel, 
we focus on the shared-nothing architecture, which is the most promising with 
respect to scalability [26]. Since each processor controls its own disk unit(s) we 
are facing (again) the problem of data distribution. Moreover, interprocessor 
communication costs must be considered, since in many cases this cost is signif­
icant and affects query processing performance. Apart from data distribution, 
index distribution is another important issue. 
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In [58] Koudas et. al. propose an R-tree distribution technique to support 
spatial range queries in a network of workstations. However, this technique can 
be applied to any shared-nothing parallel architecture as well. The R-tree leaf 
level is distributed to the available computers, whereas the upper tree levels are 
stored in the master. Since, the upper R-tree levels occupy relatively little space, 
they can be kept in main memory. Given that the dataset is known in advance, 
Koudas et. al. suggest sorting the data with respect to the Hilbert values of 
the MBRs' centroid. Then, the tree leaf level is formed, and the assignment of 
leaves to sites is performed in a round-robin manner. This method guarantees 
that leaves that contain objects close in the address space will be assigned to 
different sites, thus increasing the parallelism during range query processing. 
In Figure 6.8 we present a way to decluster the R-tree of Figure 6.7 in three 
sites, one primary and two secondary. 
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Figure 6.8. Declustering an R-tree over three sites. 

This architecture is used in Chapter 8 to process NN queries. Although the 
fundamental NN algorithm for R-trees is directly applicable, its performance 
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is not expected to be satisfactory due to increased communication costs posed 
by its branch-and-bound nature. Therefore, we provide efficient algorithms 
that are more appropriate in a parallel setting, by accessing several processors 
concurrently. 

4. Distributed Systems 
A distributed database is supported by a number of computers that are loosely 

coupled, and communicate by means of a network configuration. Communica­
tion costs are even more important than in a shared-nothing parallel architecture. 
In such a configuration, each computer may run its own applications and partic­
ipate in query processing if this is necessary. Data are partitioned and according 
to access patterns may be replicated as well, to increase query processing per­
formance and avoid communication costs when needed. For example, in a 
distributed database system based on the relational data model, a relation (ta­
ble) may he. fragmented horizontally (row-wise) or vertically (column-wise). 
The various fragments are distributed to the available computer systems, by 
allowing storing the same fragment to more than one computers. An example 
of horizontal and vertical fragmentation is depicted in Figure 6.9. 
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Figure 6.9. Horizontal and vertical fragmentation. 

We assume that a spatial relation has been horizontally fragmented and dis­
tributed to a number of databases, which may be heterogeneous (i.e.,they may 
be based on different data models and architectures). The system is composed 
of a primary server that operates as a coordinator for the source databases. All 
systems communicate via a network configuration (see Figure 6.10). We as­
sume that query requests are initiated by a user's system and then submitted 
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to the primary server for evaluation. Also, the query results are gathered from 
the source databases to the primary server and then are shipped back to the ap­
propriate user's system. Despite the fact that we perform a distinction between 
primary and secondary sites, any secondary site could take responsibility of 
evaluating user queries. Each source database has complete control over the 
objects that it stores. Therefore, different access methods and optimization 
techniques may be utilized by different databases. 

Primary Server 

Figure 6.10. Distributed database architecture. 

In such a system, the challenge is to support similarity queries, and particu­
larly /c-NN queries, as efficiently as possible. In Chapter 9 we study exactly this 
problem, where several different processing methods are proposed and evalu­
ated experimentally. Answering similarity queries in a distributed system is 
considered very important, taking into consideration the exponential growth of 
the world wide web (WWW), where millions of computer systems are con­
nected to form a large pool of useful information. 

5. Summary 
The exploitation of multiple system resources is considered a promising 

approach towards increased query processing efficiency. In this chapter we 
discussed briefly the basic concepts of parallel and distributed database systems. 
In order to take advantage of multiple resources (processors and disks) efficient 
data partitioning, index partitioning and query processing methods should be 
designed. In cases where the processors are loosely coupled, the communication 
cost must be taken into account, since it is quite significant, specifically for low-
bandwidth network configurations. 

We separate amongst three different configurations, namely: 1) multidisk 
systems, 2) multiprocessor systems and 3) distributed systems. For each case 
we briefly discussed the main arising issues. The three upcoming chapters 
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deal with the above system architectures separately, with respect to NN query 
processing. 

6. Further Reading 
There is a significant amount of research work regarding parallel and dis­

tributed database systems. Two very important textbooks on distributed database 
systems are the books by Ceri and Pelagatti [18], and Ozsu and Valduriez [86]. 
Although a lot of research has been performed since the publishing time of 
these textbooks, the issues studied in [18, 86] are very important to understand 
the main ideas behind data distribution and distributed query processing. 

A collection of important research papers for parallel relational database sys­
tems can be found in [67]. Some of the issues covered are: parallel database 
architectures, parallel sorting, parallel join processing and parallel query opti­
mization. 



Chapter 7 

MULTIDISK QUERY PROCESSING 

1. Introduction 
Nowadays, several large databases world-wide are supported by large stor­

age devices that are capable of servicing many I/O requests in parallel. This is 
feasible by exploiting disk array technology aiming at both increased data avail­
ability and increased I/O throughput. Data availability is increased because if 
a disk failure occurs, access to the corresponding data is provided by the other 
disk array units. Throughput increase is feasible, since two concurrent requests 
for the same data can be served (probably) by different disk units. However, 
throughput is highly dependent on the specific disk array architecture used, and 
the data striping method supported by the disk controller. 

In the majority of cases, an algorithm suitable for a uni-disk system is not 
appropriate in a multidisk architecture. Therefore, existing uni-disk methods 
should be adapted accordingly to provide acceptable query processing perfor­
mance. In this respect, this chapter studies the problem of NN query processing 
in a multidisk system. It is assumed that an R-tree is used to index the underlying 
dataset, which is composed of multidimensional points. 

The material of this chapter is based on [95] and is organized as follows. 
In the next section we discuss several algorithms that could be used to process 
NN queries in a multidisk system. Among them, the NN algorithm studied in 
Chapter 3 is also briefly discussed for completeness. Two more algorithms are 
given, namely: the full-parallel similarity search and the candidate reduction 
similarity search. Moreover, a hypothetical optimal algorithm is given, which 
performs the minimum possible number of disk accesses, and it is used for 
comparison purposes. Section 3 contains the performance evaluation performed 
based on real-life and synthetic datasets. Finally, Section 4 summarizes the 
work. 

87 



8 8 NEAREST NEIGHBOR SEARCH 

2. Algorithms 
In this section we discuss several algorithms for NN query processing in 

case of a multidisk system. We begin our exploration with the NN algorithm 
discussed in Chapter 3. Since this algorithm is based on branch-and-bound, it is 
not directly applicable in a parallel setting. Therefore two more algorithms are 
given that are more appropriate for a multidisk system. For comparison reasons, 
an hypothetical optimal algorithm is also given, which issues the minimum 
possible number of disk accesses. 

2.1 The Branch-and-Bound Algorithm 
The first algorithm is essentially the algorithm proposed by Roussopoulos et. 

al. [106]. This algorithm has been described in detail in Chapter 3. Hereweonly 
review some of the fundamental characteristics. The algorithm is based on a 
branch-and-bound R-tree search. In order to find the nearest neighbor of a query 
point, the algorithm starts form the R-tree root and proceeds towards the leaf 
level. The key idea of the algorithm is that many tree branches can be discarded 
according to some basic rules. These rules use two fundamental distances, 
MINDIST{P, R) and MINMAXDIST{P, R) between a rectangle R and 
a point P. 

In order to process general fc-NN queries, an ordered sequence of the current 
k most promising answers has to be maintained, and the MBR pruning has to be 
performed with respect to the furthest distance. Thus, an MBR R is discarded 
if MINDIST{R, P) from the query point P is greater than the actual distance 
from the query point to its A;-th nearest neighbor. Henceforth, this algorithm 
will be referred to as Branch and Bound Similarity Search (BBSS). 

2.2 Full-Parallel Similarity Search 
An efficient algorithm for similarity search on disk arrays must be charac­

terized by some fundamental properties: 

• parallelism must be exploited as much as possible, 

• the number of retrieved nodes must be minimized, 

• the response time of user queries should be reduced as much as possible, 
and 

• throughput must be maximized. 

Usually, if the first three properties hold then the last also holds. The problem 
is that the first two properties are contradictory for similarity search. 

Observing how the sequential algorithm works, we see that a careful refine­
ment of the candidate nodes is performed, trying to avoid node accesses that 
will not contribute to the final answer. In order to exploit I/O parallelism in 
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similarity search, we have to access several nodes (residing in different disks) 
in parallel. Intuitively this implies that the granularity of the refinement must 
be coarsened. This also implies that some of the accessed nodes eventually will 
be proved irrelevant with respect to the final answer, and therefore they should 
have never been accessed. 

Compare the above scheme with a range query. A range query is described 
by a well-defined region of arbitrary shape (usually hyper-rectangular or hyper-
spherical) and all objects intersecting this region are requested. After a node 
is accessed, we are able to determine which of its children need to be visited 
by inspecting the corresponding MBRs that are located in the node. Then, the 
disks that host the relevant children nodes can be activated in parallel. Evi­
dently, the visiting sequence of the relevant nodes is not important, since any 
such sequence leads to the same answer (assuming only read-only operations). 
On the other hand, in similarity search, the visiting order is the most important 
parameter in performance efficiency, since it is responsible for the further prun­
ing of irrelevant nodes. Note that even in range query processing, an accessed 
node may not contribute to the final answer, but this fact is due to empty space 
and the use of conservative approximations, and it is irrelevant to the visiting 
order of the nodes. Therefore, we come up with a problem definition, which is 
stated as follows: 

Problem Definition 
Given a query point P in n-d space and an integer number k, determine an ef­
ficient search of the parallel R*-tree, in order to report the k nearest neighbors 
of P, trying to (i) maximize parallelism, (ii) access as few nodes as possible, 
and (iii) reduce response time. • 

From the above discussion we observe that two fundamental sub-problems 
must be solved: 

• to determine an effective way of pruning irrelevant nodes in every tree level, 
and 

• to use a clever criterion to decide which nodes and when are going to be 
accessed in parallel. 

In the remaining of this subsection we develop a query processing technique 
aiming to solve the aforementioned problems and reach the targets presented 
in the beginning of this subsection. We continue with an important definition 
regarding the maximum possible distance MAXDIST between a point and a 
hyper-rectangle. 

Definition 7.1 
The distance MAX.DIST between a query point P and an MBR R is the 
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distance from P to the furthest vertex of R and equals: 

MAXDIST{P, R) ^ 
\ 

..12 

where: 
I -t- ^ 3 ' J 

r- = •; J' Pj — 2 
•' \ Sj, otherwise 

D 

To distinguish between the three distances {MINDIST, MINMAXDIST 
and MAXDIST) an example is illustrated in Figure 7.1, showing a point, two 
rectangles and the corresponding distances. 

MINDIST • 

MINMAXDIST > 

MAXDIST • 

Figure 7.1. MINDIST, MINMAXDIST and MAXDIST between a point P and two 
rectangles Ri and i?2 • 

We continue with a general description of a similarity search strategy in disk 
arrays. Later we investigate more thoroughly the important points and provide 
values for the parameters. The first node that is inspected by the algorithm 
is, evidently, the root of the parallel R*-tree. Note that at this stage (and until 
the first k objects are visited) there is no available information concerning the 
upper bound for the distance to the k-th nearest neighbor. Let in the current 
node A'' reside m MBRs, pointing to m children nodes. The question is which 
of the m branches can be discarded (if any), and how can we obtain the needed 
information to perform the pruning. In order to proceed, we need to calculate 
a threshold distance. The following lemma explains: 

Lemma 7.1 
Assume we have m MBRs Ri,..., Rm where MBR Rj contains 0(Rj) objects. 
Given a query point P, the k nearest neighbors with respect to P are requested. 
Assume further that all m MBRs are sorted in increasing order with respect to 
the MAXDIST distance from the query point P. Then, all k best answers 
are contained inside the circle (sphere, hyper-sphere) with center P and radius 
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r = MAX£'7S'T(P,i?2:) where a; is determined from the following inequality: 

x-l 

J20{Rj)<k<^0{Rj) 

Proof (omitted) 

(7.1) 

D 

Using the above lemma we can always determine a threshold distance Dth-
Having Dth, some of the m entries may be rejected immediately. An example 
is illustrated in Figure 7.2. The threshold distance in the example equals: 
Dth = MAXDIST{P,Ri). It can be easily observed that MBRE5 is rejected 
since the dotted circle is guaranteed to contain all the relevant answers, and R^ 
does not intersect the circle. However, there are some MBRs like i?2, ̂ 3 and 
i?4, which are intersected by the circle. Therefore, the set of candidate MBRs 
is composed of i?i, i?2, -^3 and R^. The problem arising is which of these 
candidates will be searched in the next step and which will be saved for future 
reference. 
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Figure 7.2. Illustration of praning and candidate selection. 

Assume in general that mi out of m entries have been pruned (like R^ in the 
example). Now, we have m2 — m — mi entries that need further inspection. 
The most straightforward approach is to assume that all these 7712 entries will 
eventually contribute to the final answer and therefore have to be searched. 
This technique is the main idea of the Full Parallel Similarity Search algorithm 
(FPSS), which is very optimistic with respect to the usefulness of a node. 

2.3 Candidate Reduction Similarity Search 
Instead, we propose to apply a heuristic here to (possibly) reduce the number 

of candidate MBRs. When observing Figure 7.2, it seems that MBR R2 has 
better chances to contain relevant objects than MBRs i?3 and R^. Therefore, 
candidates i?3 and -R4 are saved for future reference, whereas -Ri and R2 will 
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be searched. The criterion for candidate reduction has as follows: 

Candidate Reduction Criterion 
Given a query point P, a threshold distance Dth and a set of MBRs TZ = 
{Ri,..., Rm} then for an MBR R^: 

(i) if Dth < MINDIST{P, R^), then R^ is rejected. 

(ii) if Dth > MINMAXDIST{P, R^), then R^ is set active. 

(iii) if Dth > MINDIST{P, R^) and Dth < MINMAXDIST{P, R^), 
then Rx is saved for possible future reference. D 

The activation list contains the addresses to all nodes that are going to be 
requested from the disks in the current step. Each entry contains a pointer to its 
son. This means that we can fetch the nodes pointed by i?i and R2 from the disk 
array (if these nodes reside on different disks this can be done in parallel). Notice 
that up to now, no real object has been visited. As soon as the first k objects are 
retrieved, we have a more precise knowledge regarding the distance D^ from 
the query point P to its fc-th nearest neighbor. Every time the distance D^ is 
updated due to access of data objects, the structure maintaining the remaining 
candidate MBRs is searched and new MBRs become active. The algorithm that 
is obtained from the application of the heuristic is called Candidate Reduction 
Similarity Search (CRSS). 

Evidently, for the CRSS method to work, some auxiliary data structures 
need to be maintained. Based on the previous discussion we can identify three 
auxiliary structures: 

• a structure to maintain the pointers to the nodes that are going to be fetched 
in the next step (activation structure), 

• a structure to hold the newly fetched nodes to process them further (fetch 
structure), and 

• a structure to store the candidate MBRs that have neither been searched nor 
have they been rejected yet (candidate structure). 

The structures for (i) and (ii) can be simple arrays or linked lists and no spe­
cial treatment is required. As soon as the currently relevant pointers (node 
addresses) have been collected in the activation structure, requests are sent to 
the corresponding disks to access the required nodes. When the disks have pro­
cessed the requests, the nodes are collected in the fetch structure where further 
processing (pruning, candidate reduction, etc.) can be performed. The auxil­
iary structure to store the candidate MBRs must however be a stack, with its 
entries organized in a convenient way that helps processing. The cooperation 
of all three structures is explained in the following illustrative example. 
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Figure 7.3. Example of an R*-tree with 13 nodes and 3 entries per node. 

Example 
An R*-tree is illustrated in Figure 7.3, where all tree nodes are assumed to hold 
three occupied entries. Nodes are numbered from Â i to N13. Let us trace 
the execution CRSS algorithm for a simple query requiring the A; = 4 nearest 
neighbors of a query point. 

Iiui)«:led:Rl,RI,R3 
Selected: Rl, R2 
Rejected: none 
Saved Caiwiiibse :̂ R3 

(a) (b) 

Inspected: Rll, R12, R13.S21, R22, R23 
Selected: Rll,R2l,R22 
Rejected: R23 
Sii'.»ii Caniiidafe.!: Rll, R13 

Inspected R12.R13 
Selected R12 
Rejected R13 
StU'ed Cimdidatft'.: oone 

(C) 

Figure 7.4. Illustration of the first three stages of the CRSS algorithm. Different candidate 
runs are separated by guards, indicated by shaded boxes. 

The algorithm begins with the root (node A''!) where the MBRs R\, R2 and 
i?3 reside. Assume that Ri and R2 qualify for immediate activation (according 
to the candidate reduction criterion), whereas Rz is considered as a possible 
candidate MBR. No MBR is being rejected here. The pointers to the nodes 
N2 and iVs are maintained in the activation structure and MBR i?3 is pushed 
into the candidate stack. Note that the candidates are pushed in decreasing 
order with respect to the MINDIST from the query point. After the stack 
is updated, we are ready to fetch nodes N2 and N3 from the disks. Assume 
that these two nodes reside in different disks and therefore the requests can be 
serviced in parallel. The situation is depicted in Figure 7.4(a). 

In the next step, entries Rn through R23 are inspected. Assume that we 
have concluded that entry R23 is rejected, Rn, i?2i and R22 will be activated, 
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and finally R\2 and i?i3 will be saved in the stack. The situation is illustrated 
in Figure 7.4(b). 

The following stage involves the access of the data nodes A ŝ, Ns, and NQ. 
This is the first time during the execution of the algorithm that real data objects 
contribute to the formulation of the upper bound to the fc-th best distance (where 
k=A). Therefore, the best 4 out of 9 objects, contained in the 3 data pages, 
are selected and the distance Dth is updated accordingly. Now we pop from 
the stack the first candidate run that is composed of the MBRs R12 and i?i3. 
After comparing MINDIST{P,Rn) and MINDIST{P,Rii) with Dth, 
we conclude that R12 is intersected by the query sphere, whereas R12, can be 
safely rejected. The current situation is depicted in Figure 7.4(c). 

In the next step, node NQ is accessed, the distance Dth is updated and the next 
candidate run is popped from the stack. This run contains only R^,. Comparing 
MINDIST{P, R3) with Dth, we find that there is no intersection with the 
query sphere and therefore R3 is rejected from further consideration. Now the 
algorithm has been terminated, the best k matches have been determined and 
Dth=Dk. a 

Let us explain the use of the stack, and why is the appropriate structure in 
our case. As we descent the tree from root to leaves, the granularity of MBRs 
increases, since the empty space is reduced. Therefore, the information obtained 
from the MBRs near the leaf level is more precise than the information obtained 
from MBRs near the root. It is not wise to start the inspection of a new branch 
in a higher R*-tree level, if there are still candidate branches to be inspected in 
a lower level. The structure that captures this concept is the stack. Therefore, 
using a stack, candidate MBRs that belong to a high level are pushed in the stack 
before candidates of a lower level. Moreover, organizing the candidates in the 
stack by means of candidate runs, helps in pruning. The candidates in each run 
are sorted in increasing order with respect to the MINDIST distance from the 
query point. When a candidate run is inspected and a candidate is found that 
does not intersect any more the query sphere, we know that all the remaining 
candidates in the current run should be rejected from further consideration. A 
guard entry is used to separate two different candidate runs. This technique 
saves computational power during candidate elimination and leads to faster 
processing. 

In Figure 7.5 the CRSS algorithm is sketched. There are four basic operating 
modes that the algorithm can be at some given time: 

• The algorithm operates in ADAPTIVE mode from the time the root is 
examined until the leaf level is reached for the first time. During this period, 
the upper bound of the threshold distance Dth is adapted when passing from 
one tree level to the next one. When the algorithm leaves this mode, it never 
goes into it again during the remaining part of the execution. 
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Algorithm CRSS 
Input: P /* quety point */ 

kl* number of nearest neighbors */ 
r /« a parallel R "-tree */ 

Output; A" nearest neighbors of P 
Init: Dn, = Inf, mode=ADAPTIVE, 

AL=EMPTY, CS^EMPTY, Ft=EMPTY 

1. Read Root( 7) and place MBRs in FL; 

2. If (leaf-level reached) set mode^UPDATE; 
3. Process{FL); 
4. if {mode is not TERMINATE) 

{ 
Access nodes that have been recorded 
in AL structure; 
GOTO 2; 

} 
else STOP; 

/• 
Routine to obtain the next candidate rvn Srom the 
Candidate Stack (CS) 
*l 
Get_Candidate_Run (CS) 

{ 
if (no candidate run exists) 

{ 
set mode=TERMINATE; 
rettim; 

} 
else 

pop next candidate run from CS; 
eliminate non-relevant MBRs; 
place relevant MBRs into AL\ 
set morfe=NORMAL; 
return; 

/* 
Routine to process a number of newly fetched 
MBRs . Afiar returning the addresses of the needed 
nodes reside in the AL structure. */ 
Process {FL) 

i 
if (mode is ADAPTIVE) 

{ _ 
find new value for Dnj; 
formulate new canidate run; 
push run into CS; 

} 
else 
if (mode is NORMAL) 

{ 
eliminate non-relevant MBRs; 
if (F i is EMPTY) 

{ 
Get_Candidate_Run (CS); 
Place elevant MBRs into AL; 

} 
} 
else 

if (mode is UPDATE) 

{ 
calculate new set of nearest-neighbors; 
Get_Candidate_Run (CS); 

} 

Figure 7.5. The most important code fragments of the CRSS algorithm. 

Every time the leaf level is reached, the algorithm goes into UPDATE mode. 
This means that the array holding the current best k distances is (possibly) 
updated, since more data objects have been accessed. 

In any other case, the algorithm operates in NORMAL mode. This mode 
includes the cases where the algorithm operates in an intermediate tree level 
but after the first time the leaf level is reached. 
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• Finally, the TERMINATE mode signals that there are no more candidate 
nodes to be searched, and therefore the k best distances have been deter­
mined. 

It is observed that FPSS and BBSS are special cases of the CRSS algorithm. 
FPSS does not use a candidate stack and activates all MBRs that intersect 
the current query sphere, maximizing intraquery parallelism, whereas BBSS 
activates the MBRs one at a time, limiting the degree of intraquery parallelism. 
Let us elaborate more in code fragments A and B shown in Figure 7.5. In A, 
the candidate reduction criterion is applied. Among the fetched MBRs, some 
of them are discarded immediately, and some will be saved in the candidate 
stack for future reference. The restriction applied here is that the number of 
activated MBRs should be > I and < w, where I is the number of MBRs which 
guarantee the containment of at least k points in the activated MBRs, and u 
equals the number of disks in the system (NumOf Disks). This restriction 
is used to bound the number of fetched nodes in the next step. A similar 
policy is used in the B code fragment. Here, the candidate reduction criterion 
is again applied. When there is a need to pop the next candidate ran from the 
stack, we never allow the activation of more than u=NumO f Disks elements. 
Using this technique, there is a balance between parallelism exploitation and 
similarity search refinement. Keep in mind however, that this technique needs a 
good declustering scheme. In order for the u MBRs to reside in different disks, 
the declustering scheme must be as close to optimal as possible. 

We close this subsection by providing a theorem which shows that the CRSS 
algorithm is correct: 

Theorem 7.1 
Given a query point P and a number k, algorithm CRSS reports the best k 
nearest neighbors of P. 

Proof 
Basically, the algorithm can be considered as a repetition of three steps: (i) 
candidate elimination, (ii) generation of new candidates and (iii) retrieval of 
new data. Since the threshold distance Dth guarantees the inclusion of the best 
answers (Lemma 7.1) and only irrelevant MBRs are eliminated (according to 
the candidate reduction criterion), it is impossible that a best match will be 
missed. Moreover, the algorithm reports exactly k answers, unless the total 
number of objects in the database is less than k, in which case reports all the 
objects. • 
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2.4 Optimal Similarity Search 
Designing an algorithm for similarity search we need a criterion to charac­

terize the algorithm as efficient or inefficient. The ideal would be to design an 
optimal algorithm, guaranteeing the best possible performance. In the context 
of similarity search, two levels of optimality are identified: weak and strict 
which are defined as follows. 

Definition 7,2 
A similarity search algorithm is called weak-optimal, if for every fc-NN query 
the only nodes that are accessed are those that are intersected by the sphere hav­
ing center the query point and radius the distance to the fc-th nearest neighbor. • 

Definition 7.3 
A similarity search algorithm is called strict-optimal, if it is weak-optimal, and 
in addition for every fc-NN query the only objects that are inspected lie in the 
sphere with center the query point and radius the distance to the /c-th nearest 
neighbor. D 

It is evident that for an algorithm to be either weak-optimal or strict-optimal, 
the distance from the query point to the /c-th nearest neighbor must be known 
in advance. Moreover, in strict optimality the algorithm must also process only 
the objects that are enclosed by the sphere with center P and radius Dk- This 
implies a special organization of the data objects and it is rather impossible to 
achieve strict optimality in similarity search. Also, although weak optimality 
still imposes a strong assumption, we assume the existence of a hypothetical 
algorithm Weak OPTimal Similarity Search (WOPTSS), and we include it 
in our experimental evaluation. The performance of WOPTSS method serves 
as a lower bound for the performance of any similarity search algorithm. The 
following theorem illustrates that the algorithms presented previously are not 
optimal: 

Theorem 7.2 
The similarity search algorithms BBSS, FPSS and CRSS operating over an 
R*-tree, are neither strict-optimal nor weak-optimal. 

Proof (sketch) 
We can find a counterexample for all algorithms with respect to certain query 
points and R*-tree layouts, showing that neither the minimum number of nodes 
are visited, nor the minimum number of objects are inspected. D 

The number of accessed nodes is a good metric for the performance of a 
similarity search algorithm in the sequential case. However, in the parallel 
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case the situation is more complicated. When processing similarity queries 
on a disk array, one wants high paralleHsm exploitation in addition to small 
number of accesses. A more concrete measure of efficiency in this case is the 
response time of a similarity query in a multiuser environment. Evidently, one 
can use the response time of a single query but this does not reflect reality. To 
see why, assume that an algorithm A accesses half of the pages with respect 
to algorithm B. On a disk array, the I/O subsystem is capable of servicing 
several requests in parallel. Therefore, we may notice no difference in the 
response time of a single query for both algorithms, whereas in a multiuser 
environment the performance of algorithm B is more likely to degrade rapidly 
in comparison to the performance of A, due to heavy workloads. The question 
we are going to answer in the subsequent section is the following: Which of 
the three proposed algorithms performs the best in a multiuser environment, 
and how fast this algorithm processes similarity queries in comparison to the 
WOPTSS method? 

3. Performance Evaluation 
3.1 Preliminaries 

The algorithms BBSS, FPSS, CRSS and WOPTSS are implemented on top 
of a parallel R*-tree structure which is distributed among the components of a 
disk array. The behavior of the system is studied using event-driven simulation. 
The algorithms and the simulator have been coded in C/C++ under UNIX, and 
the experiments have been performed on a SUN Sparcstation4 running Solaris 
2.4. 

The data sets that are used to perform the performance comparison of the 
algorithms include real-life as well as synthetic ones. Obviously, many different 
data sets could be included in our study. Among the data sets we have used for 
the experiments, the most representative ones are illustrated in the following 
figures. 

The upper part of Figure 7.6 presents the real-life data sets that are selected 
from the Sequoia 2000 (California places - CP) [128] and the TIGER project 
(Long Beach -LB ) [138]. The CP data set is composed of 62,173 2-d points 
representing locations of various California places. The LB data set consists 
of 53,145 2-d points representing road segment intersections in Long Beach 
county. The lower part of Figure 7.6 presents two of the synthetic data sets that 
have been used. The SO set is composed of a number of points distributed with 
respect to the Gaussian (normal) distribution. The SU set consists of a number of 
points obeying the uniform distribution. The population and the dimensionality 
of the synthetic data sets were varying during the experiments. In the figure, 
their 2-d counterparts are illustrated, containing 10,000 points each. However, 
values up to 300,000 points have been used in the experimentation. 
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Figure 7.6. Datasets used in performance evaluation. 

An R*-tree for a particular data set is constructed incrementally (i.e. by 
inserting the objects one-by-one). The disks are assumed to communicate with 
the processor by means of a common I/O bus. The network queue model of 
the system that is used for the simulation is presented in Figure 7.7. Each disk 
has its own queue where pending requests are appended. The service policy for 
each queue in the system is FCFS (First-Come First-Served). The bus is also 
modeled as a queue, with constant service time (the time it takes to transmit 
a page from the disk controller through the I/O bus). Queues are also present 
in the processor to handle pending requests. However, we assume that when a 
new query request arrives, it enters the system immediately without waiting. 

It is evident that in a common bus, only one transmission at a time can 
take place. Therefore, if two disk controllers demand access to the I/O bus 
simultaneously, only one can do so. If other devices are attached on the same 
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new queries 
pending disk requests 

Figure 7.7. The simulation model for the system under consideration. 

I/O bus, then we may have other (interdevice) conflicts as well. However, in 
our study we take into consideration only the conflicts due to the disk array 
components ignoring interdevice conflicts, anticipating that the impact of the 
latter on the performance comparison is more or less the same for all studied 
algorithms. 

Query arrivals follow a Poisson distribution with mean A arrivals per second. 
Therefore, the query interarrival time interval is a random variable following 
an exponential distribution. The service time for the bus is constant, whereas 
the service time of a disk access is calculated taking into consideration the 
most important disk characteristics (seek time, rotational latency, transfer time 
and controller overhead). Moreover, we do not assume that the disks are syn­
chronized, and therefore each disk can move its heads independently from the 
others. The parameter values that are used in the experimental evaluation are 
presented in Table 7.1. 

In order to model each disk device, the two-phase non-linear model is used 
which is described in detail in [71,108]. \idseek denotes the seek distance that 
the head needs to travel, the seek time Tgeefc as a function of dseefe is expressed 
by the following equation: 

0, dseek = 0 (no seek) 

J-seek CI + C2- Vdseek, 0 < dseek < cutoff (short Seek) 

C3 + C4 • dseek, dseek > CUtoff (loUg Seek) 

where ci, C2, C3 and C4 are constants (in msecs) specific to the disk drive used and 
cutoff is a seek distance value, which differentiates the acceleration phase and 
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Parameter Description Assigned Value 

^node 

n 

N 

k 

d 

A 

B 

^ ^ ^ speed 

^startup 

Node capacity 

Space dimensionality 

Number of objects 

Number of nearest neighbors 

Number of disks 

Query arrivals per second 

I/O bus bandwidth 

CPU execution speed 

Query startup time 

4KB 

2 to 30 

> 10,000 

1 to 700 

l t o 4 0 

< 3 0 

20 MB/sec 

100 MIPS 

0,001 sec 

Table 7.1. Description of query processing parameters. 

the steady-speed phase of the disk arm movement. The disk drive characteristics 
that is used in the conducted simulation experiments are illustrated in Table 7.2. 

Parameter Description Assigned Value 

Cyl 

T 
-t rev 

Rtrans 

-t seefc 

Octrl 

C l 

C2 

C3 

C4 

cutoff 

number of cylinders 

disk revolution time 

disk transfer rate 

disk seek time 

disk controller overhead 

short-seek constant 1 

short-seek constant 2 

long-seek constant 1 

long-seek constant 2 

threshold seek distance 

1449 

0.0149 sec 

5 MB/sec 

variable 

0.0011 sec 

3.45 msec 

0.597 msec 

10.8 msec 

0.012 msec 

616 

Table 7.2. Description of disk characteristics (model HP-C220A) [108]. 



102 NEAREST NEIGHBOR SEARCH 

During R*-tree creation, each newly generated node (after a split operation) 
is assigned a cylinder value with respect to the uniform distribution. Evidently 
this is not the best possible allocation strategy, since it does not respect locality. 
Placing pages that are referenced together on the same cylinder reduces the dislc 
service times and this effect is orthogonal with respect to the similarity search 
algorithms, with the difference that response times are reduced. Initially, all 
disk arms are positioned in cylinder zero. The simulator executes 100 queries 
in total, and the response time per query is obtained by calculating the average. 

With respect to CPU execution costs, it is assumed that computation time is 
dominated by the scanning and sorting of each requested set of MBRs. Assume 
that A'̂  MBRs have been fetched from the disks. The scanning of these MBRs 
costs 0{N) time. After scanning, some of them are rejected so that M MBRs 
remain in the sequel. In order to sort M elements, the computational effort 
is 0{M • logM) comparisons (assuming heapsort or mergesort). Each main 
memory word has four bytes and also each number is modeled as four bytes 
of main memory. Fetching a number from main memory requires one CPU 
instruction. Therefore, to compare two numbers, three CPU instructions are 
required (two for fetching the operands and one for the comparison). Thus, the 
computation cost for scanning equals 2 • N CPU instructions and the computa­
tion time for sorting is equivalent to executing 3 • M • logM CPU instructions, 
resulting in a total of2-N+ 2,-M-logM CPU instructions. Since the MIPS rate 
for the CPU is a known parameter, the computation time is easily calculated. 
Although this cost model is simple, it reflects the CPU overhead to a sufficient 
degree. Considering more complex computation models leads to more accurate 
simulation results, but the impact on the comparison of similarity search algo­
rithms is negligible. Having described the cost model for all the fundamental 
simulator components, we continue with the illustration of some representative 
performance results. 

3.2 Experimental Results 
Evidently, it is very difficult to provide experimental results by modifying 

all parameter values. Therefore, we choose to illustrate representative results 
that shed light in the following interesting issues: 

• Effectiveness: how many nodes an algorithm visits to produce the final 
answer in comparison to the WOPTSS method, 

• Speed-up: how the performance of the methods is affected by increasing 
the number of disk array units, 

• The impact of query size and dimensionality: how the algorithms perform 
with increasing query size and/or space dimensionality, 
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The impact of workload: what is the behavior of the methods when concur­
rent queries are serviced by the system. 
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Figure 7.8. Number of visited nodes vs. query size for 2-d data sets. 
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Figure 7.10. Response time (sees) vs. query arrival rate (A). 
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Figure 7.11. Response time (normalized to WOPTSS) vs. number of disks (A=5 queries/sec, 
dimensions=5). 
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Figure 7.12. Response time (normalized to WOPTSS) vs. number of nearest neighbors (Left: 
A=l queries/sec, Right: A=20 queries/sec). 
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Population Dislcs BBSS CRSS WOPTSS 

10,000 

20,000 

40,000 

80,000 

5 

10 

20 

40 

0.76 

0.74 

1.07 

1.59 

0.47 

0.28 

0.29 

0.33 

0.23 

0.15 

0.15 

0.16 

Table 7.3. Scalability with respect to population growth: Response time (sees) vs. population 
and number of disks, (set: gaussian, dimensions: 5, NNs: 20, A=5 queries/sec). 

/t Disks BBSS CRSS WOPTSS 

10 

20 

40 

80 

5 

10 

20 

40 

2.48 

2.14 

2.37 

2.95 

1.30 

0.32 

0.55 

0.40 

0.48 

0.19 

0.28 

0.21 

Table 7.4. Scalability with respect to query size growth: Response time (sees) vs. number of 
nearest neighbors and number of disks, (set: gaussian, dimensions: 5, population: 80,000, A=5 
queries/sec). 

3.3 Interpretation of Results 
By inspecting Figures 7.8 - 7.12 and Tables 7.3 - 7.4 some very interesting 

observations can be stated. As expected, WOPTSS shows the best performance 
in all experiments contacted. With respect to effectiveness (see Figure 7.8-7.9), 
BBSS fetches the smaller number of nodes up to a point. After this point, CRSS 
is more effective, and the performance of BBSS deteriorates by increasing the 
number of nearest neighbors. In order to explain this behavior of BBSS a small 
example is given in Figure 7.13, assuming that k = 12. Since the algorithm 
chooses to visit the MBR with the smallest MINDIST distance, MBR Ri 
will be visited first. If 12 data objects lie in the subtree of i?i, all of them will 
be visited, despite the fact that some of them will not contribute to the final 
answer. Evidently, in the branch of R^ lie some objects that are closer to the 
query point. Therefore, if i?i and i?2 were visited in a BFS (Breadth First 
Search) manner, the total number of disk accesses could have been reduced 
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Ri contains 12 objects 
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Ri contains 16 objects 

Figure 7.13. 
accesses. 

BBSS will visit all nodes associated with the branch of i?i, leading to unnecessary 

considerably. The drawback of BBSS affects its performance even more, by 
increasing the number of dimensions, as shown in Figure 7.9. By increasing 
the space dimensionality, the overlap of the MBRs increases also, and therefore 
the pruning of branches becomes a difficult task. Moreover, several MBRs may 
have zero value for the MINDIST distance, resulting in a difficulty to select 
the appropriate next branch to follow. The superiority of CRSS lies in the fact 
that it uses a successful combination of BFS and DPS (Depth First Search) of 
the parallel R*-tree. On the other hand, BBSS is DFS-based, whereas FPSS is 
BFS-based. Algorithm FPSS fails to control the number of fetched nodes and 
this results in a large number of disk accesses. The good performance of CRSS 
is retained in all data sets used and all examined dimensionalities. 

In Figure 7.10, we illustrate the response time per query versus the query 
arrival rate. FPSS is very sensitive in workload increase, since there is no control 
on the number of fetched nodes. Its performance is the worst in comparison 
to the other methods. However, for small workloads and large number of 
disks FPSS is marginally better than CRSS. This is illustrated in Figure 7.10 
(right graph). This happens because the large number of disks compensates the 
increased demand for disk accesses. 

Figure 7.11 demonstrates response time versus number of disks. It is evident 
that the speed-up of CRSS is better than that of BBSS. In fact CRSS is between 
2 to 4 times faster than BBSS. Algorithm FPSS is not considered any more, 
since its performance is very sensitive on the workload and the number of disks 
in the system. 

The performance of the methods with respect to the number of nearest neigh­
bors is illustrated in Figure 7.12. Again, it is observed that CRSS shows the 
best performance, outperforming BBSS by factors (3 to 4 times faster). Finally, 
Tables 7.3 and 7.4 present the scalability of the algorithms with respect to pop­
ulation growth and query size growth. CRSS is more stable than BBSS and on 
average is 4 times faster. 
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The general conclusion derived is that CRSS is on average 2 times slovi'er 
than WOPTSS and outperforms by factors both BBSS and FPSS. Thus, CRSS 
succeeds in: 

• fetching a small number of nodes, and 

• exploiting parallelism to a sufficient degree. 

For these reasons, the use of CRSS is recommended as a fast and simple sim­
ilarity search algorithm in a system based on dislc arrays. Table 7.5 contains a 
qualitative comparison of the studied algorithms, summarizing the performance 
evaluation results. 

BBSS FPSS CRSS WOPTSS 

disk accesses 

throughput 

response time 

speed-up 

scalability 

intraquery I/O parallelism 

interquery I/O parallelism 

V 

V 

V 

V 
limited 

V 
V 
V 
V 
V 
V 
V 

V 
V 
V 
V 
V 
V 
V 

Table 7.5. Qualitative comparison of all algorithms (a ^/ means good performance). 

4. Summary 
The problem of exploiting I/O parallelism in database systems is a major 

research direction. In this chapter, we investigated similarity search techniques 
for disk arrays. The fundamental properties that such an algorithm should pre­
serve are: parallelism must be exploited as much as possible, the total resource 
consumption should be minimized, the response time of user queries should be 
reduced as much as possible and throughput must be maximized. 

Three possible similarity search techniques are presented and studied in detail 
with respect to the above issues. Moreover, an optimal approach (WOPTSS) 
is defined, which assumes that the distance Df. from the query point to the k-th 
nearest neighbor is known in advance, and therefore only the relevant nodes are 
inspected. Unfortunately, this algorithm is hypothetical, since the distance Dk 
is generally not known. However, useful lower bounds are derived by studying 
the behavior of the optimal method. All methods are studied under extensive 
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experimentation througli simulation. The simulation process takes into consid­
eration the disk model, the conflicts on the I/O bus, and CPU time. A number of 
different datasets are used with various populations, distributions and dimen­
sionalities. Among the studied algorithms, the proposed one (CRSS) which 
is based on a careful inspection of the R*-tree nodes, and leads to an effective 
candidate reduction, shows the best performance. However, the performance 
difference between CRSS and WOPTSS suggests that further research is re­
quired to reach the lower bound as much as possible. 

5. Further Reading 
The exploitation of multiple disk units for efficient query processing has 

been studied in [113] in the case of B-trees. In [141] the authors study optimal 
methods for data declustering, by using a closed-form formula to estimate the 
performance of the methods. In [11] the authors propose an efficient technique 
for parallel query processing in high-dimensional spaces. Efficient methods for 
parallel query processing using M-trees have been proposed in [147]. 



Chapter 8 

MULTIPROCESSOR QUERY PROCESSING 

1. Introduction 
In Chapter 6 we discussed some important issues regarding the exploitation 

of multiple processors towards increased query processing efficiency. In this 
chapter we continue with a performance evaluation of parallel NN algorithms 
in a parallel database system, which is supported by a set of interconnected 
computer systems (network of workstations). The challenge in this case is to 
partition the data among the several processors to achieve good performance 
during query processing. In addition, the query processor must be carefully 
designed, taking into consideration that processor communication is performed 
by message passing, and therefore data transfer costs are not negligible. 
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Figure 8.1. Declustering an R-txee over three sites. 
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Given that the dataset is known in advance, Koudas et. al. suggest sorting 
the data with respect to the Hilbert values of the MBR centroids [58]. Then, the 
tree leaf level is formed and the assignment of leaves to sites is performed in 
a round-robin manner. This method guarantees that leaves that contain objects 
close in the address space will be assigned to different sites, thus increasing the 
parallelism during range query processing. In Figure 8.1 we present a way to 
decluster an R-tree in three sites, one primary and two secondary. 

Recall that although in this study we assume that the processors reside in 
different computer systems, the methodology can be applied to more tightly-
coupled architectures as well, where processors reside in the same machine. 

The material of this chapter is based on [92, 94] and is organized as follows. 
In the next section we present some performance estimation issues which are 
used throughout the chapter to predict the number of disk accesses for a fc-NN 
query. Section 3 studies NN query processing algorithms, whereas Section 4 
contains the performance evaluation results of the study. 

2. Performance Estimation 
In this section we show how we can estimate the number of leaf accesses 

involved due to the processing of a k-NN query. In Chapter 4 we gave average 
upper and lower bounds with respect to the number of leaf accesses for k=l NN 
queries only, assuming that the query points are allowed to "land" on actual data 
points only. In this chapter, we are based on a different query model, which as­
sumes a uniform distribution of the query points over the whole address space. 
The latter model, even if it does not reflect reality always, it has been used by 
many researchers working in the access methods area [87]. Here we try to esti­
mate this number as precisely as possible, using statistical information that we 
assume are available. The estimation of the number of leaf accesses is based on 
the following basic observation to which we have concluded after conducting 
a series of experiments. The analytical derivation of a closed formed formula 
to verify the validity of this observation is an issue for further research. 

Basic Observation 
If the query points follow a uniform distribution over the 2-d data space, then 
the average number of R-tree leaf accesses involved when we process a A;-NN 
query, using the branch-and-bound algorithm, grows almost linearly with re­
spect to k. • 

This linearity property allow us to approximate the expected number of leaf 
accesses using a linear equation of the form: 

F{k) = a*k + b (8.1) 
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where k is the number of nearest neighbors, F{k) the expected number of leaf 
accesses, a the curve slope and b a real positive constant. The main problem 
is to calculate a and b. We can base the calculation on available statistical 
information. Let us assume that we have the expected number of leaf accesses 
F(fci) and F{k2) for ki and ^2 nearest neighbors, respectively, where fci 7̂  A;2. 
It is evident that: 

^^EMJZZM ,8.2, 
«2 -k-i 

and 
b^F{ki)-a*ki (8.3) 

Using sample values for ki and k2 we can measure the values F(ki) and F(k2). 
From Equations (8.2) and (8.3) we obtain the values for a and b respectively. 
Substituting in Equation (8.1) we have a formula to estimate the expected num­
ber of leaf accesses. The values ki and k2 can be selected by the database 
administrator or can be adjusted by the statistical module. In our framework 
we used the values ki = 10 and k2 = 500. 

The graphs of Figure 8.2 show the measured and estimated number of leaf 
accesses versus the number k of nearest neighbors. The datasets used are 
described in a subsequent section. For each graph 100 NN queries were gen­
erated uniformly over the data space and the average number of leaf accesses 
was calculated. It is evident that the approximation is reasonably accurate (the 
maximum and mean errors are around 20% and 10% respectively) and there­
fore it can be used for estimation purposes. We also studied a regression based 
approximation using several sample values of k (ki, k2, ..., /:„). Although a 
more accurate estimation was obtained on average, the practical impact on the 
performance of the proposed algorithm was negligible. 

3. Parallel Algorithms 
3.1 Adapting BB-NNF in Declustered R-trees 

In order to apply the BB-NNF method in a declustered R-tree, some modifica­
tions need to be considered. Recall that the data pages are searched one-by-one 
and consequently, each server is activated one-by-one. Because the determi­
nation of the best answers is performed through successive refinement, every 
time a new data page is searched, the current set of nearest neighbors is updated 
accordingly. This behavior results in two alternatives to process NN queries 
over a network. 

BB-NNF-1 
In this approach, when a new server is activated, the primary server sends 
the query point together with the currently best k distances. This way, 
the corresponding secondary server can determine the absolutely necessary 
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Figure 8.2. Measured and Estimated number of leaf accesses vs. the number k of nearest 
neighbors. 

number of objects to transmit back. However, for large values of k, the 
network consumption can increase considerably and the benefits of this 
approach may be lost. 

BB-NNF-2 
In this approach, only the distance to the fc-th currently best nearest neighbor 
of the query point is transmitted along with the query point itself The 
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advantage is that only few bytes are needed in order to activate a secondary 
site. On the other hand, the pruning that the activated secondary site can 
perform is limited, since the selection of the objects is performed with only 
one reference distance. Therefore, there is high probability that among the 
transmitted objects some of them are not necessary. 

It is evident, that there is a trade off that need to be further investigated by 
means of experimental evaluation. In this respect, we consider both variants 
of BB-NNF for the comparison to be complete. The two approaches are based 
on the same concept but they differ in the implementation. In the sequel, when 
we mention BB-NNF we mean any of the two variants, if this does not pose 
confusion in readability. 

3.2 The Parallel Nearest Neighbor Finding (P-NNF) 
Method 

The main drawback of BB-NNF method is that due to its serial nature, 
query processing is not affected by the number of secondary sites available 
and therefore, no parallelism is exploited. Moreover, a particular site may be 
accessed several times, each time processing a different data page. Evidently, 
we would liice to have more control on the processing strategy. Also, we would 
like to exploit parallelism as much as possible, thus speeding up processing. In 
this subsection we present and study the P-NNF method, suitable for answering 
NN queries in a declustered environment. In Figure 8.3, we illustrate the basic 
difference of the two methods. 

In the top of the figure, we see how the BB-NNF method proceeds with 
the execution of a query. Each time a secondary server Sj is activated, the 
primary server must wait until the Sj transmits all the results. Then the primary 
server may proceed with the activation of another secondary server. All three 
phases, namely activation phase, local processing phase and result transmission 
phase, appear in a strict sequence and no parallel processing is achieved. On the 
other hand, as we present in the bottom of Figure 8.3, we would like to exploit 
parallelism during the local processing phase, reducing the query response time. 
Generally, each secondary server neither processes the same amount of data, 
nor transmits the same number of objects. The exact calculation of the response 
time and the cost model description is presented in Subsection 4.2. 

In the sequel, we are using the distances MINDIST, MINMAXDIST 
and MAXDIST between a rectangle R and a point P, which have been de­
fined in previous chapters. The distances are depicted in Figure 8.4. The main 
goal of the proposed method is to determine the secondary sites that are going to 
be activated simultaneously. The algorithm comprises of three different steps. 
First, we start at the primary site and we search the R-tree with respect to the 
MINDIST measure from the query point, until the final internal tree level 
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Figure 8.4. MINDIST, MINMAXDIST and MAXDIST between a point P and two 
rectangles Ri and i?2-

(the "father" level of the data pages) is reached. In the second step, a radius Dr 
is determined which guarantees that all the qualifying objects (and other objects 
as well) are falling inside the circle with center the query point and radius Dr. 
Then, a range query is performed with respect to this circle and a set of data 
pages MBRs is gathered, by inspecting the MBRs of the last internal level. In 
the last step, the first F{k) data pages (with respect to the MINDIST metric) 
are visited and the relevant answers are collected. To guarantee the avoidance of 
dismissals, the remaining of the gathered MBRs must be checked for relevance. 
Bellow we describe each step of the algorithm in detail: 
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Algorithm P-NNF 

Input: a query point P and the number k of nearest neighbors requested. 

Output: a sorted sequence of distances ai, . . . , a^ of the fc nearest neighbors 
of P . 

Stepl 
Let the k nearest neighbors be requested with respect to a query point P. 
The R-tree is traversed top-down with respect to the MINDIST metric. 
This means that, in each node we take the branch that corresponds to the 
MBR with the minimum MINDIST with respect to the query point P. 
The traversal stops at the last R-tree internal level. Also, Iceep in mind that all 
upper levels are stored at the primary site, and all data pages are distributed 
in the available secondary sites. In this step no data pages are visited. 

Step 2 
Assume that the internal node / has been reached in Step 1. Let this node 
contain e = Oin{I) entries, pointing to e data pages. We sort these pages 
in increasing order, with respect to the MAXDIST metric and obtain the 
sorted sequence 5 i , . . . , Be- Each data page Bj contains Odp{Bj) objects, 
where 1 < j < e and corresponds to a region R{Bj) that encloses all 
the objects. Note that from node / at most X)j=i Odp{Bj) data objects 
can be accessed. Although we will generalize later, for the time being 
let k < X)j=i Odp{Bj). We determine the smallest positive integer c, 
where 1 < c < e, such that the circle with center P and radius Dr = 
MAXDIST{P, R{Bc) contains at least k objects. More formally: 

C C—1 

Y.Od,{B^)>k>Y,Odb{Bi) 
3=1 i = i 

A range query is performed in the R-tree, using the circle with center P and 
radius Dr and a set of data page MBRs is collected. Again, in this step, no 
data pages are accessed. 

Step 3 
Assume that M data page MBRs have been collected from the previous step. 
In general, this number is greater than the number of data pages we really 
need to obtain the answer. Here, we use the estimation for the expected 
number of leaf accesses illustrated in the previous subsection (see 

Equation (8.1)). Therefore, from the M MBRs we choose the first m=F{k) 
with respect to the MINDIST metric. The appropriate secondary sites are 
activated simultaneously, and the k most promising answers are collected. 
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If after the collection of the answers there are still MBRs, among the M, that 
may contain relevant objects, we must process them as well. Therefore, the 
MINDIST of the remaining data page MBRs are compared with the fc-th 
nearest neighbor of P. If for an MBR R the value of HINDIST{P, R) 
is greater than the distance from P to its fc-th nearest neighbor obtained so 
far, then R is rejected from consideration, since it is impossible to contain 
any of the nearest neighbors of P. 

In Step 2 of the algorithm, we assumed that k < Yl^i=i ^dp{Bj). In other 
words, from the first father node / i we visit, we can access at least k objects. 
However, it is possible that / i does not have enough occupied entries to cover 
k. The number of objects that are contained in each data page is recorded in 
the father node. Therefore, we know how many objects a data page contains, 
before visiting the page. The solution to this problem is very simple though. 
All we need is to visit another father /2, with respect to the MINDIST of the 
query point, such that the sum of the objects we can access from both / i and 
/2, exceeds k. Evidently, this process can be continued with more father nodes, 
until the condition is satisfied. 

3.3 When Statistics are not Available 
In the previous subsections, we explained how the statistical information is 

exploited to process a NN query. However, statistics are not always available, 
and therefore there is a need to devise a modified P-NNF method to exploit 
parallelism, when statistics on the expected number of data page accesses are 
not available. The only difference of the new method (P-NNF-2) with P-NNF 
appears in Step 3. Recall that the number F{k) (expected number of data page 
accesses) is used as an estimation for the relevant data pages, during searching 
for the k nearest neighbors of a query point P. However, in this case, the F{k) 
value is not available, and some other starting point should be defined. Recall 
that, after the completion of Step 2 of P-NNF algorithm, the M relevant MBRs 
of the data pages are sorted with respect to the MINDIST distance from the 
query point. We determine an integer mk such that: 

^Od,iB,)>k> ^ Od,(Bj) 
i= i j=i 

In other words, we keep on investigating the sorted list, until the current sum of 
objects exceed the number k. Note that something similar has been performed 
in Step 2 to determine the Dr distance. These first mk data pages are guaranteed 
to contain at least k objects, but it is too optimistic to declare that all of the best 
objects will be among them. However, we hope that at least some of them will 
participate in the final answer, and that the rest will not be too far away from 
the query point, enabling effective pruning. 
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After the determination of rrik, the m^ data pages are accessed, and a sorted 
sequence ai, . . . , a^ of the k best matches is formulated. Then, we check the 
M — rrik remaining MBRs to determine if some of them need to be accessed. 
Therefore, all MBRs Mj where MINDIST{P, Mj) < a/,, should be further 
investigated. For this purpose, the primary site sends the sequence ai , . . . , a^ 
to the relevant secondary sites, and collects the results. The primary server 
determines the best k objects, and formulates the final answer set of nearest 
neighbors. 

3.4 Correctness of P-NNF Algorithms 
One can observe that both P-NNF algorithms are correct. In other words, 

the methods determine a sorted list of object distances from the query point 
P, such that all k nearest neighbors of P are included. Let ai , . . . , a^ be the 
sorted list of distance values. Without loss of generality, let â  ^ aj, where 
i ^ hj < k and i ^ j . Assume that there is an object distance a^ that is not 
contained in the answer set, but for some j the following holds: a^ < aj, where 
1 < J < fc- This means that we have a false dismissal,, because an object that 
should be returned as one of the nearest neighbors, does not appear in the final 
answer. This can happen only due to one of the following reasons: 

(i) The circular range query that is performed with respect to Dr distance does 
not cover all the best distances, or 

(ii) A data page Bj is not visited, although MINDIST{P, R{Bj)) < a'f., 
where a'̂ . is the currently best distance from P to its fc-th nearest neighbor. 

Case (i) is avoided, since Dj. is selected in a way that encloses at least k ob­
jects. Case (ii) is avoided, since after the first formulation of the best distances 
a\,...,a'^, the remaining candidate data pages are checiced with respect to the 
MINDIST and a'̂ . Therefore, any data page that may contain answers is 
accessed. Thus the following holds: 

Proposition 8.1 
Algorithms P-NNF-1 and P-NNF-2 are correct since they return at least k object 
distances ai, . . . , a/c with respect to the query point P, and no distance smaller 
than a/c is left out. • 

4. Performance Evaluation 
4.1 Preliminaries 

We implemented the Hilbert-packed R-tree, the branch-and-bound (BB-
NNF) and the parallel nearest neighbor (P-NNF) algorithms in the C program­
ming language under UNIX and simulate the parallel environment on a SUN 
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Sparcstation 4. The tree fanout is set to 50 and therefore, each node contains at 
most 50 entries. 

The pure network speed, NSpure, is set to 10Mbps. In order to investigate 
the behavior of the methods under different network loads, we make use of a 
variable netload by which we divide the pure network speed and we get the 
effective network speed: NS^ff = ^ ^ - Due to the CSMA/CD protocol, 
many sites may try to transmit simultaneously, resulting in a collision. The net 
effect of the collisions is that there is a delay in transmitting a frame from a 
source to the destination. Therefore, the netload variable reflects exactly this 
delay. We used the frame layout of the IEEE 802.3 CSMA/CD bus standard, 
which is illustrated in Figure 8.5. Both real-life and synthetic datasets have 
been used for the performance evaluation. The datasets are described in Table 
8.1 and are shown graphically in Figure 8.6. 

Preamble 
7 bytes 

Source Address 
6 bytes 

Desl. Address 
6 bytes 

Data 
0 - 1500 bytes 

Checksum 
4 bytes 

Start of frame delimiter 
I byte 

Data Length 
2 bytes 

Pad 
0 - 46 bytes 

Figure 8.5. The IEEE 802.3 (CSMA/CD bus) frame layout. 

Dataset 

lUE 

MG 

LB 

CP 

SU 

ss 

Population 

15,100 

27,000 

57,000 

62,000 

100,000 

100,000 

Description 

Star coordinates from International Ultraviolet Explorer (NASA) 

Road segment intersections in Montgomery County (TIGER) 

Road segment intersections in Long Beach County (TIGER) 

Coordinates of various places in California (Sequoia 2000) 

Synthetic dataset with uniform distribution 

Synthetic dataset with skew distribution 

Table 8.1. Description of datasets. 

4.2 The Cost Model 
Recall that the architecture we study here, assumes a network capable of 

performing multicasting. Also, we agree that when a server wants to transmit 



Multiprocessor Query Processing 119 

(a) lUE 

1 

<f̂ '/-
"1^ 'l 

t":. 
*> 

I ' 

•4 

^ 't^^, 
- i 

i & ^ ;• 

(d)CP (e)SU (OSS 

Figure 8.6. Graphical representation of datasets used for experimentation. 

data and the network media is available (no other server is currently using it) 
then the server will send the data immediately. 

In Figure 8.7 above, we present an example of how the response time of a 
query can be calculated. Assume that the primary server initiates a NN query, 
and that the qualifying servers are 5i , ^2 and 53. Each one of the servers 
will perform some local computations and local I/O to process its portion of the 
answer. Also, each one of the activated servers must transmit the results back to 
the primary server. In time point A, the primary server has searched the upper 
tree levels. Immediately, transmits a packet to activate the relevant servers. 
In time point B, all servers have received the request, and they start the local 
processing phase which includes retrieving and inspecting the corresponding 
data pages. In time point C, server Si completes its local processing phase, 
and since the network media is free, it starts the transmission of the results to 
the primary server. Although server 53 completes its processing at time point 
D, it can not transmit the data because the network media is occupied by ^ i . 
Eventually, Si completes the transmission of the results and therefore ^3 may 
commence the data delivery. Finally, server 52 starts the transmission at time 
point G and at time point H the whole process is completed. Therefore, the 
response time ranges from the beginning of processing, until time point H. 
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Figure 8.7. Calculation of the Response Time of a query. 

We assume that a disk access of a page (either internal or leaf) has a cost of 
Tpage=lOms. The total time Tpacket to transmit a packet that contains b bytes 

• r „ 

equals: 

-^packet AT- Q "*" "̂  setup 

where NS is the network speed in bytes/second and Tgetup is the time overhead 
required to prepare the packet and is set to 5ms. A similar approach has been 
followed in [62, 143]. 

4.3 Experimental Results 
We conducted several series of experiments to test our proposed method and 

its behavior under different settings. 

• In the first series of experiments, we compare the P-NNF and BB-NNF 
methods using all datasets. In Figure 8.8 we present the response times for 
the two methods using 10 secondary sites and high network speed (10Mbps). 
The value of k ranges between 1 and 1000. 

• In the second series of experiments, we measure the number of frames 
transmitted over the network, the number of objects transmitted by each 
method and the time required to search the upper R-tree levels on the primary 
server. These results are illustrated in Figure 8.9 for the LB data set. Again, 
the value of k ranges between 1 and 1000. 
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Nearest Neighbors Requested Nearest Neighbors Requested 

Figure 8.8. Response time (in msecs) vs. k (secondary sites=10, NS^ff = lOMbit/sec). 

In the third series of experiments, we use sample values for the number k of 
nearest neighbors and test the changes in the response time with respect to 
the number of secondary sites (Figure 8.10) and the effective network speed 
(Table 8.2). The data set used is the LB. Three values of k are used, fci=10, 
fc2=100 and A;3=200. In Figure 8.10, the number of secondary servers ranges 
between 1 and 30. In Table 8.2 the number of secondary servers is fixed 
at 10, whereas the effective network speed ranges between lOKbit/sec to 
lOMbit/sec. 
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Figure 8.9. Number of transmitted frames, time to process the upper R-tree levels and number 
of transmitted objects, vs. k (secondary sites=10, NSeff = 10Mbit/sec). 

Since the behavior of the methods is similar for all datasets, in the second and 
third series of experiments we present results for the LB set only. All results 
are obtained after applying each nearest neighbor query 100 times and taking 
the average. 

4.4 Interpretation of Results 
The first observation derived from Figure 8.8 is that P-NNF-1 method is 

superior to BB-NNF-1, BB-NNF-2 and P-NNF-2 methods in a parallel envi­
ronment. The response time of a NN query is decreased drastically. In some 
cases, for small values of k (e.g. k < 5) the cost at the primary site may 
dominate and BB-NNF may be better. However, with the use of buffering, 
most of the internal tree nodes will be maintained in main memory, eliminat­
ing this problem. The general observation obtained from Figure 8.8 is that the 
performance gain of P-NNF over BB-NNF increases as k increases. 

By inspecting Figure 8.9, we observe that P-NNF-1 transmits the smallest 
number of network frames (packets). Therefore, the probability of collisions 
is reduced in comparison to all other methods. However, P-NNF-1 transmits 
more objects than the other approaches. This is the price we pay to exploit 
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Figure 8.10. Response time (in msecs) vs. number of secondary servers. 

parallelism. At the bottom of Figure 8.9 we observe that BB-NNF-2 transmits 
the smallest number of objects, since each time a new data page is accessed and 
a server is activated, the currently best k distances are transmitted as well. 

With respect to the overhead to search the upper R-tree levels, that are stored 
on the primary server, we can state that BB-NNF methods process fewer number 
of nodes than P-NNF. The increased number of nodes processed in P-NNF 
methods is due to the circular range query applied. Since the primary site 
stores only the upper R-tree levels, these could be maintained in main memory 
and therefore the processing cost would be very small. 

In the P-NNF method, as the number of secondary sites increases, the re­
sponse time decreases. However, the degree of parallehsm is a function of 
the values of k and the number of secondary sites. On the other hand, the re­
sponse time in BB-NNF-1,2 methods remains constant since the method does 
not exploit any parallelism. These remarks are illustrated in Figure 8.10. 

The network load has a very strong impact on the performance of both meth­
ods as shown in Table 8.2. In fact, under high network loads, the gain of P-NNF 
over BB-NNF decreases. This is an expected outcome, since the network usage 
time outperforms by factors the local processing time at each site and therefore, 
the benefits of parallel processing are no more existent. However, since fiber 
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NSeff in Kbit/sec BB-NNF-1 BB-NNF-2 P-NNF-1 P-NNF-2 

Nearest Neighbors: 10 

10000 
1000 
200 
100 
10 

10000 
1000 
200 
100 
10 

91.35 
95.43 
112.60 
137.38 
593.15 

Nearest 

175.97 
199.58 
273.97 
404.69 
2597.12 

91.37 
95.64 
113.53 
139.30 
612.36 

Neighbors: 100 

178.43 
224.90 
387.72 
649.52 
5103.60 

67.25 
72.96 
88.95 
100.00 
443.92 

82.94 
100.69 
179.02 
297.99 
2427.55 

84,27 
90.10 
104.54 

118.93 
514.47 

108.33 
130.31 
220.18 
373.64 
3043.70 

Nearest Neighbors: 200 

10000 
1000 
200 
100 
10 

226.63 
273.55 
410.21 

584.58 
3978.71 

234.12 
353.18 
792.25 

1355.55 
11974 

80.56 
107.70 
239.47 

408.39 
3578.12 

110.31 
145.04 
314.64 
543.78 
4398.77 

Table 8.2. Response Time vs. network speed (Secondary sites=10, NN requested = 10, 100 
and 200). 

optics technology is becoming more and more available, reaching speeds of 
1000Mbps, the use of P-NNF is recommended. 

5. Summary 
In this chapter, we study the performance of NN queries in multidisk multi­

processor architectures. We assume that data objects are stored in an R-tree and 
the whole structure is distributed over a number of servers, each with a single 
processor and a single disk attached. The basic motivation behind this work 
is the fact that the branch-and-bound algorithm of Roussopoulos et. al. [106] 
is strictly serial and therefore, cannot be applied directly in a parallel environ­
ment. We use statistical information to estimate the number of leaf accesses 
introduced due to the processing of a A;-NN query and we use this estimation, 
in order to provide an efficient execution strategy. As long as the number of 
objects inserted or deleted is small, the statistical information need not be up­
dated. The renewal of statistical data would be necessary after a large number 
of insertions/deletions. 
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Moreover, we present a modified algorithm to process NN queries in parallel, 
when statistical data are not available. Experimental results based on real-life 
and synthetic datasets show that the proposed P-NNF algorithms outperform 
the BB-NNF algorithms by factors. The efficiency measure is the query re­
sponse time, which contains communication cost and local processing cost at 
each server. We test our method for light-loaded and heavy-loaded networks, 
different number of servers, different data populations and distributions and we 
observe that the response time is decreased drastically. 

With respect to the generalization to higher dimensional spaces, the basic 
linearity observation stated in Subsection 8.2, may no longer hold, due to in­
creased overlap between node MBRs. In this case, we need to estimate the 
number of data page accesses either using higher-order regression models, or 
accurate closed formed formulae. 

Although we focused on packed R-trees, the method can equally well be 
applied in dynamic environments. In such an environment, packed R-trees are 
not recommended because the structure characteristics change rapidly due to 
insertions and deletions of data. Instead, another variant should be used (e.g. 
R*-tree [7], dynamic Hilbert R-tree [29]), that is better equipped to handle the 
dynamic behavior. 

6. Further Reading 
Other approaches for parallel query processing by using spatial access meth­

ods have been studied in [41], where the authors study data-parallel algorithms 
for spatial operations using data-parallel variants of the bucket PMR quadtree, 
R-tree, and R"*" -tree. The algorithms are implemented using the scan model of 
parallel computation on a hypercube architecture. 

Efficient algorithms for parallel intersection spatial join processing have been 
proposed in [17], whereas in [6, 116] efficient techniques have been reported 
for parallel similarity join processing. 

Declustering and load-balancing for non-point objects are studied in [118], 
where the authors study several critical issues for parallelizing Geographical 
Information Systems. An important issue that is covered in this work, is the 
declustering of complex non-point objects. 



Chapter 9 

DISTRIBUTED QUERY PROCESSING 

1. Introduction 
In Chapter 8 we have focused on a parallel architecture composed of a net­

work of workstations, where data are declustered amongst the available proces­
sors. In this chapter, we study NN query processing in a distributed database 
system. More specifically, we make no assumptions about the data declustering 
method, since each database is considered autonomous. However, we assume 
that each autonomous database is capable of answering NN queries in its local 
data, although different databases could exploit different algorithms and access 
methods. 

Since no particular declustering scheme can be assumed, the algorithms 
studied in the pervious chapters can not be applied in this case. The system is 
composed of a primary server that operates as a coordinator for the m source 
databases. All systems are communicating via a network configuration (Figure 
9.1). 

Primary Server 

Figure 9.1. The abstract system architecture. 

127 
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The primary server may be a data warehouse or simply a system that is re­
sponsible for controlling and supervising the source databases. We assume that 
query requests are initiated by a user's system and then submitted to the pri­
mary server for evaluation. Also, the query results are gathered from the source 
databases to the primary server and then are shipped back to the appropriate 
user's system. Despite the fact that we perform a distinction between primary 
and secondary sites, any secondary site could take responsibility of evaluating 
user queries. Each source database has complete control over the objects that 
it stores. Therefore, different access methods and optimization techniques may 
be utilized by the different databases. 

Definition 9.1 
Given a A;-NN query Q, the response time for Q is defined as the time elapsed 
from query submission to query completion. n 

The challenge is to determine an efficient method for NN query processing 
in a distributed system. Moreover, the number of parameters is quite large and 
in some cases trade-offs occur (e.g., the degree of parallelism vs. the number of 
transmitted objects). The problem we are going to deal with in the remainder 
of the chapter is stated as follows: 

Problem Statement 
Given a distributed multidimensional database and a fc-NN query Qk, find an 
efficient evaluation strategy, to minimize the response time of Qk and to con­
sume as few overall system resources as possible. • 

In order to approach the problem from a theoretical point of view, several 
simplifying assumptions should be introduced, resulting in a more feasible and 
tractable analysis. The basic assumptions introduced are summarized below: 

1 Although we do not require the source databases to be homogeneous, we 
will assume that the cost to answer a given query is the same, for all source 
databases. 

2 We assume that the similarity metric between two multidimensional vec­
tors is the Euclidean distance {L2 metric), and every database respects this 
similarity measure. 

3 The data are partitioned to the source databases in such a way that no repli­
cation exists. In other words, each object is stored in only one database. 

4 If during processing we must retrieve L disk pages from a source database, 
the required time is L • Tp, where Tp is the expected page access time [1]. 
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The material of this chapter is based on [96] and is organized as follows. 
Section 2 studies different query processing strategies, whereas Section 3 dis­
cusses briefly the impact of derived data. Section 4 contains the performance 
evaluation which demonstrates the performance of the methods under differ­
ent parameter values. Section 5 discusses several important issues, whereas 
Section 6 concludes. 

2. Query Evaluation Strategies 
2.1 Algorithms 

Let a A;-NN query, Qk, be submitted for evaluation to the primary server. 
Our first approach is to examine the query evaluation when no derived data 
are available. In a following section, we discuss what kind of derived data are 
necessary to improve the efficiency in similarity query processing. We could 
define two extreme strategies to answer the query: 

Concurrent Processing - CP: Submit the query to all m source databases 
and collect k objects from each one. Among the m • A; objects, select the 
best k (those that are closer to the query object). 

Selective Processing - SP: First activate one source database. Collect the 
best k answers. Send only the distances of these k objects to the next source 
database and collect another I objects, where 0 < I < k. Continue until all 
source databases are visited and the best matches have been determined. 

We note that the first method tries to maximize parallelism but retrieves too 
many objects (m • k), whereas the second method, performs a more refined 
search, but no parallelism is exploited. Therefore, we define the next method, 
which is a combination of the two previous ones: 

Two-Phase Processing - 2PP: First visit / source databases and collect / • k 
objects. Then, select the best k and send the k distances to the rest m — f 
source databases. Finally, collect the answers and determine the final set of 
nearest neighbors. 

Finally, we define a last method that performs an optimistic search, pretend­
ing that each source database will contribute with almost the same number of 
objects. 

Probabilistic Processing - PRP: First request k/m + 1 objects from each 
source database. Then, formulate the current set of best matches, and if 
there are sources that are still relevant, visit them again and collect the final 
set of objects. 

By requesting k/m + 1 objects from each database, we can reject a database 
if the {k/m + l)-th distance from the query point is larger than the best fc-th 
distance determined so far. 
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2.2 Theoretical Study 
We proceed with some theoretical investigation, regarding the efficiency of 

the four query evaluation strategies. The results will give some insight with 
respect to the efficiency of each approach under different settings. 

Symbol Description Value 

m 

N 

Nj 

d 

s„ 
So 

5„ 

Dp 

^header 

Dpmax 

Tp 

k 

Cj 

NCj 

Rj{k) 

NS 

f 

number of source databases 

total number of objects 

number of objects in j - th source database 

dimensionality of the vector space 

size of a number in bytes 

average size of an object in bytes 

size of a d-dimensional vector in bytes 

size of a disk page in bytes 

size of a network packet header in bytes 

size of a network packet in bytes (without header) 

page read time in seconds 

number of nearest neighbors requested 

contribution of j - th source database 

net contribution of the j - th source database 

query response time (in seconds) for strategy j 

network speed in bytes per second 

visited databases in step 1 of 2PP algorithm 

5 -30 

100,000 - 10,000,000 

N/m 

2 - 2 0 

4 

100 - 100,000 

d • Sn 

4K 

24 

1500 

0.01 

1-500 

100,000 - 1,000,000 

1 

Table 9.1. Symbols, definitions and corresponding values. 

Table 9.1 presents the basic symbols and the corresponding definitions that 
are extensively used throughout this chapter. With Rj (k) we denote the average 
query response time in seconds, for strategy j to answer a A;-NN query. The 
total processing cost comprises of three basic parts: CPU cost, I/O cost and 
communication cost. We expect that CPU cost will have a small impact on the 
performance comparison of the strategies and therefore, it is excluded from our 
theoretical study. However, CPU cost is included in our experimental study 
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presented in a subsequent section. 

Definition 9.2 
We call contribution Cj of the j-th source database, the number of objects 
processed and transmitted during the evaluation of a k-NN query. Obviously, 
Cj < k for all j , where 1 < j < m and X;jLi Cj > k. D 

Definition 9.3 
We call net contribution NCj of the j-th source database, the number of ob­
jects from the j-th database that participate in the answer set of a fc-NN query. 
Obviously, 0 < NCj < k, for all j , where 1 < j < m and Yl]Li NCj = fc. • 

Note that the contribution of a source database depends on the visiting se­
quence. Evidently, the net contribution of a source database is independent of 
the visiting sequence and depends on the data placement and the query point 
location. Under the uniformity and independence assumption, we expect that 
the net contribution of each database equals k/m. 

Definition 9.4 
The local processing cost of a source database to process a fc-NN query is 
defined as: 

Costdb = (lNA{k) + 1^ . fcV Tp (9.1) 

where INA{k) refer to the number of index node accesses for k nearest neigh­
bors, which depends on the database population, the space dimensionality and 
the data structure used to store and manipulate the objects, Tp is the page read 
time. So is the average number of bytes per database object, Sp is the number 
of bytes per disk page and O is the number of objects that are accessed. We 
note that the first part of the above equation is due to the index search, whereas 
the second one is due to the access of the object detailed descriptions. • 

Here we describe the derivation for the local processing cost in a source 
database. This cost is composed of two components: (i) the cost to search the 
index and (ii) the cost to access the objects. From [29] the average number 
of R-tree node accesses (INA) for a window query is given by the following 
equation: 

j=0 ^eff i=\ 
w^w = E5£j-nU.+ %^) I »2) 
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where N is the number of objects, h is the tree height, d is the dataspace 
dimensionaUty, C^ff is the average node capacity, and ĝ  is the window size in 
each dimension. The space is normalized to the unit hypercube. 

In order to exploit the previous formula, we assume that the objects are 
uniformly distributed in the address space. Under this assumption, if k denotes 
the number of objects contained in a query volume Vol{Q), the following holds: 

Vol{Q) k 

Vol{Space) N 

Therefore, if the query volume corresponds to a hyper-rectangle, the window 
size Qs equals: 

Substituting the value of QS in Equation (9.2), we obtain a formula to estimate 
the expected number of node accesses during the execution of a NN query 
asking for the k nearest neighbors. 

h-l ^ d 

j=0 ^eff i = l 

On the number of index node accesses we have to add the number of additional 
pages that need to be retrieved to fetch the objects from the disk. To read k 
objects each having a size of So bytes each, we need to read | ^ • k disk pages. 
Since each access costs Tp seconds, the total local processing cost of answering 
a NN query in a source database equals: 

Costiocai - (lNA{k) + ^.kYTp (9.3) 

We would like to note that the above cost model does not include buffer 
management or boundary effects due to high dimensionality. In these cases, 
other models could have been used instead. However, we used Equation (9.2) 
because of its simplicity, and because it can be used to model non-uniform 
distributions [29]. 

Definition 9.5 
The cost for transmitting B bytes using the communications network is defined 
as follows: 

Costtrans{B) = —- • (B + Sheader] (9.4) 
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where NS is the network speed in bytes per second, Spmax is the maximum 
capacity of a network packet, and S^eader is the packet header size in bytes. • 

Based on the assumptions and the definitions given, let us proceed with 
a comparative study among the four methods described in the previous para­
graphs. For each strategy, an estimation of the query response time is presented, 
giving an indication of the query processing performance. In the sequel, we 
denote with Costact the cost to activate a database, with Costdb the processing 
cost in each database, and with Costresuit the cost to collect the results from 
a database. We assume that the network does not support multicasting. In a 
different case, the derived costs will be slightly different. 

Concurrent Processing 
A message comprising of the query vector and the number k of nearest neighbors 
requested is submitted from the primary server to all source databases, one at a 
time. This costs: 

Costact = Costtransi^v + ^n) 

Since all source databases receive the query request almost at the same time, 
the local processing cost equals: 

Costdb = (lNA{k) + 1^ • ^) • ^P 

Finally, the primary server must collect k objects from each source database. 
Therefore: 

Costresuit = Costtrans{k ' {Sn + So)) 

Summing up all costs we get: 

Rcp{k) = m • Costact + Costdb + m • Costresuit (9.5) 

Selective Processing 
All source databases are activated by sending the query vector and the number 
k of nearest neighbors requested. This costs: 

Costact =^ COSttrans\^v + ^n) 

For each subsequent source database (except the first one) the primary server 
must transfer the current k best distances: 

Costact2 — Costtrans{k • Sn) 
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because we must send the k distances of the best objects obtained so far. Let 
each source database j process Cj objects. Then, the local processing cost 
equals: 

So 
Costdb = \INA{k) + ^.Cj]-Tp 

The transmission of Cj objects from source database j to the primary server 
costs: 

Costresult — CosttransiiSo + ^n) • Cj) 

Summing up all costs we get: 

m m 

Fisp{k) = m • Costact + (TO - 1) • Costact2 + ^ Costdb + ^2 ^O^^result 

(9.6) 

Two-Phase Processing 
First, the / source databases are activated by sending the query vector and the 
number k of nearest neighbors requested. This costs: 

Costact — Costtrans\Sy + bn) 

Each of the / source databases will process k objects in parallel, costing: 

Costdbi = (lNA{k) + ^-k\-Tp 

The transfer of k objects from each of the / source databases costs: 

Costresultl — Costtrans{k • (So + 5 '„)) 

The activation of the rest m — f source databases requires the transfer of the 
current best k distances plus the query vector: 

Costact2 — Costtrans(k • Sn) 

The m — f source databases process C objects each. Therefore, the local 
processing cost is: 

Costdb2 = (iNAik) + ^.cyTp 

The primary server must collect C objects from each source database (among 
the m — f ones) and therefore: 

Costresultl = Costtrans{C • [SQ + Sn)) 
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In conclusion, the total cost for this strategy is given by: 

R2Pp{k) = m • Cost act + Costdbl + f • Costresultl + 

+ {fn- f) • Costact2 + Costdb2 + 

+ ( w - / ) • C0Stresult2 (9.7) 

Probabilistic Processing 
A message comprising of the query vector and the number k/m + 1 of nearest 
neighbors requested is submitted from the primary server to all source databases. 
This costs: 

Cost act = C OSttrans\Sv + 5'„) 

Since all source databases receive the query request almost at the same time, 
the local processing cost equals: 

Costdb = (lNA{k/m + 1) + 1^ • (k/m + 1)^ • Tp 

Subsequently, the primary server must collect k/m+1 objects from each source 
database. Therefore: 

Costresult = Costtrans{{k/m + 1) • {Sn + So)) 

In the best case of PRP (PRPfeest) no further processing is required. However, 
in a typical case (PRPa^p) let m' be the number of reactivated databases, where 
each one contributes with Cj objects. The reactivation cost per database equals 
the transmission cost of the best k distances determined so far: 

C0Stact2 = Costtrans{k • Sn) 

Each of the reactivated databases will perform further processing to determine 
the best k matches. Therefore, the cost per database equals: 

Costdb2 = (lNA{k) + J- • Cj) • Tp 

Finally, each reactivated database will transmit Cj objects, with cost: 

Costreault2 — Costtrans{{So + Sn) ' Cj) 

Summing up we obtain: 

RpRp{k) = m • Costact + Costdb + m • Costresult + 

+ m ' • Costact2 + Costdb2 + ™' " CostresuH2 (9.8) 

It is evident that the performance of CP is quite predictable, since each source 
database processes and transmits exactly k objects. However, to predict the per­
formance of SP and 2PP, further analysis is required. We need the following 
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lemmas to proceed. 

Lemma 9.1 
Assume that NCj = ^ for all 1 < j < m. Then the following holds: 

1 The first accessed database that will process and transmit k objects. 

2 The n-th database (where n < m) that we access, will process and transmit 
k — n • ~ objects in the worst case and ^ objects in the best case. 

3 The last (m-th) visited database will process and transmit exactly — objects. 

Proof 
We examine each case separately: 

1 This is straightforward, since no precomputed distances exist before the 
access of the first source database. 

2 We know that the net contribution of the j-th source database is NCj = 
k/m. This means that k/m is the minimum number of objects that each 
source database will process and transmit. To prove the upper bound, let us 
assume that the currently accessed database, transmits I > {k — {n—l)-^) 
objects. This means that we have found I — (k — (n — 1) • —) objects in 
this database that are closer to the query point than some objects among the 
(n — 1) • k/m. Moreover, this fact implies that the net contribution of one or 
more databases that were accessed previously is not k/m but lower, which 
contradicts our assumption that the net contribution of each source database 
is k/m. Therefore, the upper bound in the number of transmitted objects 
for the n-th accessed database is fc — (n — 1) • ^ . 

3 This is a special case of 2 above by setting n = m. • 

Lemma 9.2 
The average number of objects processed and transmitted by a source database 
for a A;-NN query by SP is: 

yr— /m2 + 5 m - 2 \ , 
^̂ ^ = [-^^^ ) • ^ 

Proof 
According to Lemma 9.1, the n-th visited database source database will process 
and transmit k/m objects at best and A; — (n — 1) • ^ object at worst. Therefore, 
on average we expect that {k — {n — 2) • •^)/2 objects will be processed and 
transmitted. Taking into consideration all source databases, we have that the 
average number of processed objects per source database equals: 

-=;— k 1 x-^ k • m — (n — 2) • k -^— m? + 5m, — 2 , 
OsP = - + --y] ^ ^— => Osp = — 2 k 

m. m ^-^ Im 4m^ 
n=2 
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D 

Lemma 9.3 
The average number of objects processed and transmitted by a source database 
for a fc-NN query by 2PP is: 

Proof 
Each of the / first accessed source databases will process k objects, resulting 
in a total of f • k objects. The rest m — f databases will process at least k/m 
objects and at most k — f • — objects and on average (A; — ( / — 1) • ^ ) / 2 
objects. Taking all source databases into consideration we get: 

m 

D 

Evidently, if each database contributes exactly k/m objects, the PRP method 
needs only one phase, since no database will be reactivated. However, in a 
more typical case, some of the databases will be reactivated and further objects 
will be processed and transmitted. In such a case, the expected number of ob­
jects that each reactivated database will process is given by the following lemma. 

Lemma 9.4 
The average number of objects processed and transmitted by a source database 
for a fc-NN query by the second step of PRP is: 

k • {m — 1) — m 
OpRP = 

Proof 
In the first step, each database has transmitted k/m + 1 objects. Therefore, at 
least k/m, + 1 best matches have been determined. In the second step, each 
database will transmit at least 0 and at most k - {k/m + 1) objects. Therefore, 
the average number of objects equals — ^ ^ '-. • 

According to the above lemmas, the average execution time for each evaluation 
strategy is given by the following formulae: 
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Rcp(k) = m • CosttransiSv + 5„ ) + \INA{k) + ^.k\-Tp + 

+ m • Costtrans{k • {S^ + So)) (9.9) 

Rspik) = m-Costtrans{Sy + Sn) + {m-l)'Costtrans{k-Sn) + 

+ m • (lNA{k) + ^ • 0 ^ \ • Tp + 

+ m-C0Sttrans{{So + Sn)-'0^) (9.10) 

R2pp{k) = m • CosttransiSv + 5„) + 2 • (lNA{k) + ^ • O^j • Tp + 

+ m-C0Sttrana{02PP- {So + Sn)) + 

+ {m-f)-C0Sttrans{k-Sr,) (9.11) 

RpRp{k) - m-CosttransiSy +Sn) + 

So 
+ llNA{k/m+l) + y-{k/m+l)\-Tj 

+ m • Costtrans{{k/m + 1) • (5„ + So)) + 

+ (m/2 ) • Costtrans{Sn • k) + 

+ (iNAik) + ^ • Opnp] • Tp 

+ (m /2 ) • Costtrans{OpRP • {So + S'„)) (9.12) 

The scenario assumed in the above analysis (scenario A) is that the detailed 
object description is transmitted in addition to the distance from the query point. 
This is useful when the user requires the first answers to be available as quickly 
as possible, even if they do not correspond to the real nearest neighbors. As 
long as the size of each object is small (e.g., 100 bytes), there is relatively little 
overhead for processing and transmitting this extra information. On the other 
hand, for larger object sizes and large numbers of requested neighbors, this cost 
becomes very significant and may dominate with respect to the total response 
time. Therefore, another scenario (scenario B) that could be followed, is to 
first determine the object IDs and the distances to the query point, and then 
to reactivate the relevant databases to fetch the detailed description of only 
the best matches. Evidently, the cost for this last action is the same for every 
strategy. We do not present the equations for the second scenario, since are 
simpler versions of Equations (9.9) to (9.12). However, in the analytical and 
experimental evaluation we demonstrate both cases. 
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Equations (9.9) to (9.12) give tlie expected execution time for eacli strategy 
when the system is lightly loaded, and therefore the waiting time is negligible. 
The behavior of the methods under a system load is studied using an experi­
mental evaluation (see Section 5). 

2.3 Analytical Comparison 
Summarizing the theoretical analysis, in this subsection we present a com­

parative study regarding the efficiency of the four strategies. We present some 
results, with respect to the formulae of the previous subsection, to study the 
behavior of the methods under different parameter values. The parameters 
modified and the corresponding values are summarized in Table 9.1. We note 
that these results correspond to the execution of a single query, which means 
that the impact of concurrent users is not taken into account. 

In Figure 9.2 the four query evaluation methods are compared, based on the 
analytic results. This figure includes the results for the case where the object 
detailed descriptions are processed and transmitted. Evidently, the PRPtest 
method outperforms by factors the other candidates. The response time of all 
methods is increased by increasing the number of nearest neighbors (see Figure 
9.2(a)). CP is most affected by this increase, since every database processes and 
transmits k objects. Although SP transmits the smaller number of objects, the 
price paid is that no parallelism is exploited, and the response time is increased. 

By increasing the number of dimensions, the processing cost in each database 
increases also. For large space dimensionalities (e.g., above 20) the cost to 
search the index becomes significant. In Figure 9.2(b) it is observed that meth­
ods 2PP and PRPai,g tend to converge, and the same is observed for the methods 
CP and PRPfcesf. For smaller dimensionalities (e.g. < 10) the PRP methods 
show clearly the best performance. 

The impact of the effective network speed on the performance of the methods 
is illustrated in Figure 9.2(c). For small effective network speed (large network 
traffic), the CP shows the worst performance, since it transmits more objects 
than the other methods, and therefore the network becomes the bottleneck. 
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An interesting observation (see Figure 9.2(d)) is that the performance of SP 
is affected in a negative manner by increasing the number of databases, whereas 
the response time of the other methods is reduced. The cause for this behavior 
is that SP does not exploit intraquery parallelism. 

The increase in the number of objects is depicted in Figure 9.2(e). Evidently, 
all methods are affected significantly. Finally, in Figure 9.2(f), the response time 
with respect to the object size is illustrated. The impact on object size growth 
is stronger for CP, since it processes and transmits more objects than the other 
methods. 

In Figure 9.3 we illustrate the performance of the methods for the case where 
the detailed object description is not transmitted. It is observed that the results 
are not modified drastically with respect to the results in Figure 9.2. 

The results presented in Figures 9.2 and 9.3 correspond to a single user 
system, with no other interference. In a general case however, many users 
are posing queries to the database, resulting in network traffic and competition 
for the CPU in each database. For example, although the SP method does 
not support intraquery parallelism, supports interquery parallelism, because it 
is possible to access all m databases for m different queries. On the other 
hand, we expect a large performance degradation for CP method, since for 
large number of concurrent users queues will grow larger in disks, CPU and the 
network. In the next section we examine the impact of concurrent users, giving 
experimental results on a real implementation of the query evaluation strategies 
over a network of workstations. 

3. The Impact of Derived Data 
In the previous section, we discussed evaluation strategies assuming that 

no derived data are available in the primary server. Therefore, all ra source 
databases need to be visited to determine the best k matches to a given query 
object. However, in real applications, the presence of derived data is very im­
portant to avoid searching large dataspace portions without a chance to retrieve 
relevant objects. Moreover, we may avoid visiting a particular source database, 
if we are absolutely sure that no relevant objects can be found, reducing net­
work contention and saving overall system resources. Several types of derived 
data can be useful, ranging from simple numerical values (e.g., the number of 
objects in the database) to more sophisticated ones and difficult to obtain (e.g., 
an exact description of the object distribution). We focus on derived data infor­
mation that represent Minimum Bounding Boxes (MBB) of a set of objects. In 
other words, some descriptors are used to group objects in sets, e.g., two MBBs 
enclosing two different sets of objects. 

In order to be able to discard quickly data space portions not related to the 
answer set, we require the presence of a set of MBBs stored in the primary server. 
For each source database j , the primary server maintains a number of MBBs. 
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The smaller the overlap of these MBBs the better the discrimination during 
query processing. Also, a large number of MBBs helps the discrimination 
process. 

To illustrate the use of MBBs for discrimination among objects, we present 
a few examples in Figure 9.4. In Figure 9.4(a) two MBBs are shown, each 
holding five points in the 2-d space. Assume that the three nearest neighbors 
with respect to point P are required. Let the circle enclose the best matches 
determined so far, namely, the points 1, 2 and 3 of MBBl. Then we can safely 
avoid the search in MBB2, since there is no intersection with the circle. 

MBB2 

• 4 

• 2 

MBB1 

• 1 

• 3 

'• 
(a) 

MBB2 
(b) 

MBBl 

1 P 

'MSSS 

(c) 

Figure 9.4. (a) Use of two MBBs for discrimination, (b) The nearest neiglibor of P is not in 
MBBl, (c) A query point P enclosed by many MBBs. 

Consider now a query point and a number of MBBs. The question posed 
is which MBB are we going to visit first and how can we safely prune any 
dataspace portions that are not promising. The order that we access the MBBs 
(and consequently the source databases), has a major impact on the efficiency 
of a query processing strategy, since it is highly correlated to the number of 
transmitted objects. The following lemma (which is easily generalized for an 
arbitrary number of source databases) shows why a "good" visiting order of the 
source databases is necessary and also explains what "good" means. 

Lemma 9.5 
Assume we have only two source databases SDB\ and SDB2 with net con­
tributions NCi and NC2 respectively, for a specific /c—NN query. Assume 
further, without loss of generality, that NCi < NC2. Then, the sum of contri­
butions, C1+C2, is maximized if the source databases are accessed in increasing 
net contribution order (i.e. SDBi first and SDB2 second), and is minimized 



144 NEAREST NEIGHBOR SEARCH 

if they are accessed in decreasing net contribution order (i.e. SDB2 first and 
SDB\ second). 

Proof 
Consider that we first visit SDBi and then SDB^. The first database will 
contribute k objects and the second NC2 = k — NCi objects (according to 
Lemma 9.1). This results in a total of & + NC2 objects. Now, assume that we 
first access SDB2 which will process k objects, and then SDBi which will 
process NCi = k — NC2 objects. The total number of objects is A; + NCi. 
Evidently, k + NCi < k + NC2 and this completes the proof. n 

An approach used in [106] is to visit the MBBs according to the MINDIST 
distance. The MINDIST{P, R) distance is defined as the minimum distance 
between a query point P and an MBB R. Therefore, a sorted list of MBBs 
with respect to the query point is formulated and then we investigate each 
MBB, following the order. There are two main drawbacks with this approach, 
illustrated in Figure 9.4: 

1 The fact that the query point P is closer to MBB R does not provide any 
guarantee that also the nearest neighbor(s) of P will be found in R (Figure 
9.4(b)). 

2 By definition, if a query point P falls inside an MBB R, then it hold that 
MINDIST{P, R) = 0. Therefore, in the case where P falls inside many 
MBBs R\,...,Rn, we are forced to select an MBB randomly, or apply 
another heuristic in order to resolve ties (Figure 9.4(c)). 

Despite the above drawbacks of the MINDIST approach, the method is 
simple and easily implemented. In a separate section we discuss further im­
provement that requires additional information. In the following lines, the 
query evaluation strategies are presented taking into account the derived data 
information. 

CP 
1. Determine the relevant source databases from derived data. 
2. Send the query to the relevant databases. 
3. Collect all answers. 
4. Determine the best k matches. 

SP 
1. Determine the relevant source databases from derived data. 
2. Using the MINDIST metric, find the best source database to access. 
3. Send the currently best distances to the database. 
4. Collect answers. 
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5. Discard any source databases that do not require access. 
6. If there is no database to access then STOP else GOTO 2. 

2PP 
1. Determine the relevant source databases from derived data. 
2. Using the MINDIST metric, find the best f databases to access. 
3. Collect answers from the / databases. 
4. Determine the currently best distances. 
5. Discard any source databases that do not require access. 
6. If there is no database to access then STOP. 
7. Assume that s databases require access currently. 
8. Access the s databases and collect the new answers. 
9. Determine the best k matches. 

PRP 
1. Determine the relevant source databases from derived data. 
2. Send the query to the r relevant databases, and collect k/r + 1 objects from 
each one. 
3. Determine the current set of nearest neighbors. 
4. Reactivate some of the databases if needed. 
5. Determine the best k matches. 

In all methods, we need first to determine the relevant source databases, and 
to discard any databases that is impossible to contribute to the answer set. This 
is performed by means of the MAXDIST metric. The MAXDIST between 
a point and an MBB is defined as the distance from the point to the furthest 
MBB vertex. The following lemma explains: 

Lemma 9.6 
Assume we have a set Mj of MBBs for each source database j . Let M " denote 
the number of objects that the MBB Mji encloses. For simplicity let M^^ be 
equal for all j and i. We denote by R the distance between the query point P 
and the \k/MJ^ -th MBB with respect to the MAXDIST metric, where k is 
the number of nearest neighbors requested. Then, all objects that participate 
in the answer set of nearest neighbors lie inside the circle with center P and 
radius R. 

Proof 
The circle C contains at least k objects, since we select for the circle radius 
the MAXDIST to the [fc/Mj^.]-th MBB. If there is no other object inside the 
circle, then the k found so far are the best k matches. Any other object which 
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is closer to the query point than any of the k objects above, must lie inside the 
circle necessarily. n 

4. Performance Evaluation 
4.1 Preliminaries 

The performance evaluation of the processing strategies were carried out on a 
cluster of five Silicon Graphics workstations, comprising the source databases. 
We used a SUN Sparcstation-4 for the primary server. The workstations were 
interconnected via a lOMbit/sec Ethernet. Two types of processes were de­
fined: 1) a client process running on the primary server and 2) a server process 
running on each source database. The responsibility of the client process is 
to pose queries to the source databases, whereas the responsibility of a server 
process is to serve the queries that are directed to the corresponding source 
database. The programs were coded in the C programming language under 
UNIX and the interprocess communication was based on the TCP/IP stream 
sockets programming interface [126]. 

We assume that each source database maintains an R-tree index for object 
storage and manipulation. Other data structures could have been used equally 
well. We generated random points in the 2-d, 3-d, 5-d and 10-d spaces. We 
can distinguish two ways to partition the objects to the source databases. In the 
first one, random assignment of objects to databases is used. In this approach, 
almost all source databases must be accessed to answer a similarity query. In 
the second one, each database is responsible for a small dataspace portion. 
In this approach, few databases must be accessed during query processing. 
Experiments have been conducted for the first case only, for brevity. 

In order to study the performance of the methods under system load, we 
assume that users are posing queries concurrently to the primary server. Also, 
several values of the number of nearest neighbors requested were used and 
different object sizes. For each experiment the average response time per simi­
larity query was calculated. Each user poses ten queries in total, and the queries 
are executed one-by-one. 

4.2 Cost Model Evaluation 
In a previous section a cost model has been derived for each query processing 

method. In order for these cost models to be useful, they should accurately 
predict the performance in real situations. Therefore, we start the experimental 
evaluation of the methods by first comparing the analytical formulae to the 
actual running time of each method. 

In Figure 9.5 the theoretical and measured response time for queries are de­
picted for each method. The parameters used for the evaluation are summarized 
below: Af=100,000, NS=\ MByte/sec, m=5, d=2, 5o=1000 bytes, / = 1 . The 



Distributed Query Processing Ul 

w 0.25 
n 

0.125 

0.D625 

0,03125 

CP-ana^iG 

•— y r 

j ^ 
r''' 

y 
/^'\ 

/ : 

I 0.25 

0.12S 

0.0625 

0.03125 

(a) Concurrent Processing (CP) 

,: 

2PP-ana^tiC 

.̂ .̂.,..,..,,. 
• • " 

K -

-̂';. 
' • 

Z^. 
:••"' 

i 

^ • • " ' 

ly^ 

y^''-

1 

' "'y' 

^^-

; • • • -

; 
i 

i 
) 

• SP-rtieasurrf - o -
SP-anal/tia -><-• 

I 

L, 

" • : 

: y • . . 

^" 

: ^ ' " : 

(b) Selective Processing (SP) 

4 

2 

0.5 

0.25 

0.125 

! 
PRSIH 

i 

: 
• 

^.^' 

i 

\ 
Er 

\ 

i ^ 

'• 

'-^y^ 

• ^ ' 

^ -

/ 
y 

xX" 

Number of Nearest Neighbors (k) 

(c) Two-Pliase Processing (2PP) (d) Probabilisac Processing (PRP) 

Figure 9.5. Cost model evaluation (logarithmic scales). 

graphs are plotted in logarithmic scales so that the differences are clearer. It 
is evident that the cost models are quite accurate, since the maximum relative 
error is around 20%, whereas the average relative error is around 10%. 

Therefore, the cost model can be used to accurately predict the performance 
of a query evaluation method. This enables to use the formulae for query 
optimization purposes or for selecting the appropriate method to answer a query 
according to the parameter values. More specifically, if one of the critical 
parameters (e.g., the effective network speed) changes, then by consulting the 
formulae the best method for the current settings can be selected. This gives 
the flexibility to the query execution engine to select the evaluation method that 
is expected to give the most promising results. 

4.3 Experimental Results 
In this subsection we illustrate representative results with respect to the real 

performance of the query evaluation strategies. Figure 9.6 illustrates the re­
sults when the detailed objects' description is processed and transmitted by 
the databases, whereas in Figure 9.7 these costs are not included. All graphs 
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Figure 9.6. Measured response time for scenario A (logarithmic scales). 

are plotted in logarithmic scales. In order to investigate the performance of 
the methods under system load, we assume that users are posing queries con­
currently. Each user submits queries to the primary server one-by-one. The 
response time illustrated in the graphs is the average response time per query, 
calculated over all users. We note that the cost includes CPU time, since for 
large number of users we expect this cost to be significant, because of waiting 
time. 
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In Figure 9.6(a) we depict the response time with respect to the number 
of nearest neighbors k. For this experiment we used the following parameter 
values: A^=250,000, d=3, m=5,5^=1000, and / = 1 . Each database holds 50,000 
objects. There are 30 users posing queries concurrently. For a small number 
of k (e.g., 2,3), CP performs quite well. However, when k increases, the 
performance of CP degrades. The reason is that CP demands k objects from 
each activated database, resulting in high resource consumption in the CPU, 
the disk, and the network. An interesting observation is that although SP does 
not exploit intraquery parallelism, its performance is very good in a multiuser 
system. However, PRP shows the best performance. 

Figure 9.6(b) illustrates the method performance for different number of 
dimensions. Each database holds 50,000 objects. The remaining parameters 
have as follows: A;=50, m-5,5o=1000, and / = 1 . There are 30 concurrent users 
posing queries. Evidently, all methods are affected drastically by increasing the 
space dimensionaUty. The reason is that CPU and disk costs are higher, due to 
the increased index processing cost in each database. 

Figure 9.6(c) illustrates the method performance for different number of 
databases, and different number of objects. Each database holds 50,000 objects. 
The remaining parameters have as follows: fc=50, c?=10, S'o=1000, and / = 1 . 
There are 30 concurrent users posing queries. PRP demonstrates the best 
performance, whereas the performance of CP degrades. By increasing the 
number of databases, more network traffic is anticipated, since CP requests k 
objects from each database. Also, SP and 2PP have similar performance. 

The impact of the object size is illustrated in Figure 9.6(d). This graph 
was produced using A''=250,000, A;=50, d=\Q, f=\ and assuming that there 
are 30 users posing queries. Evidently CP is affected more, and we expect 
higher degradation for larger number of bytes per object. Again PRP and SP 
demonstrate similar performance, and PRP performs the best. 

The impact of the number of concurrent users is depicted in Figure 9.6(e). 
Again, A/'=250,000, A;=50, d=3, 5o=1000, and / = 1 . When the number of users 
is relatively small (e.g., < 10), the performance of SP degrades. This behavior is 
explained by taking into account that SP does not exploit intraquery parallelism. 
Therefore, the CPU and disk costs in each database are added, resulting in 
performance degradation. CP, 2PP and PRP show similar performance. For a 
large number of concurrent users, CP is affected in a negative manner, because 
of bottlenecks. The other methods demonstrate similar performance, with PRP 
being the most efficient method. 

In Figure 9.7 we illustrate the performance of the methods for scenario B, 
where the detailed object description is not transmitted by the databases before 
the k best matches have been determined. It is interesting to note that in most 
cases SP does not perform well, unlike scenario A. The network traffic is re­
duced, and this is in favor for CP, 2PP and PRP. The only exception occurs 
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Figure 9.7. Measured response time for scenario B (logarithmic scales). 

for a large number of concurrent users (e.g.,50) where the performance of the 
methods tends to converge (see Figure 9.7(b)). 

5. Discussion 
In this section we discuss some issues that are of major importance and can 

be considered for improvements in the future: 

• Care should be taken when designing the derived data. If the number of de­
rived data objects is large, then the primary server may become a bottleneck 
due to the increased CPU time required to process them. The reason is that 
a large number of MBBs helps in better pruning during query processing 
but, on the other hand, increases the required processing time. Therefore, it 
would be useful to maintain a separate data structure for the derived data to 
speed up processing. 

• The generation of the derived data is very important. If the objects are ma­
nipulated by the source databases using a data structure based on Minimum 
Bounding Boxes (e.g., R-trees, R+-trees) then we can use an intermediate 
tree level to extract the MBBs needed by the primary server (see for example 
[58]). On the other hand, if the corresponding data structures are not MBB 
based, then the MBBs should be generated artificially. 

• As explained in Section 4, the MINDIST approach can lead to a not 
that efficient access order of the source databases. A number of additional 
reference points may help in better ordering of the source databases. For 
example, a reference point may be the center of a cluster of objects. There­
fore, if a specific cluster center is closer to the query point than other cluster 
centers, we have a good chance that this particular cluster will contribute 
the most to the final answer set of nearest neighbors. The point here is that 
additional computation is required to extract the clustering information from 
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the source databases and, also, to exploit this information during query pro­
cessing. The fact that cluster centers will improve processing performance 
still needs to be justified through experimental evaluation. 

• A major issue that affects the performance of all methods is the object 
placement to databases. Since we allow each database to have separate 
and complete control over its stored objects, insertions and deletions of 
objects will create high overlaps among the dataspaces of the databases. 
This effect results in accessing many source databases for a single query. 
On the other hand, if we force centralized control (i.e. a single site is 
responsible for insertions/deletions/reorganizations), then it is still an open 
problem to derive optimal data placement techniques for similarity query 
processing. 

6. Summary 
We have examined the problem of multidimensional similarity query pro­

cessing in a distributed system. The problem is well studied for the centralized 
case, and a number of very efficient methods have been proposed. However, 
in a distributed database system we have to take into consideration the com­
munication overhead, in addition to the CPU and I/O cost, especially when 
the size of each object is not negligible. Four query evaluation strategies were 
developed and studied analytically and experimentally. The efficiency of each 
method depends heavily on several parameters such as the number of available 
source databases, the object placement in the databases, the object volume, the 
space dimensionality, the communication speed, the number of nearest neigh­
bors requested, and the number of users issuing queries concurrently. 

Each of the studied query evaluation strategies has its advantages and disad­
vantages, and the performance varies according to the parameters. Generally, 
methods 2PP and PRP are the most robust, whereas CP and SP are sensitive to 
the multiprogramming degree and the database processing cost. However, they 
can be used in special cases. The developed cost model can be used to predict 
the performance of a query evaluation method. 

7. Further Reading 
In several cases, each database uses its own similarity function and therefore 

specialized processing techniques are required. An interesting approach that 
applies when there are multiple systems (databases) with different similarity 
measures is proposed in [27, 105]. The proposed techniques can be applied 
either to a distributed system or to a centraHzed one which is composed of 
different modules with different similarity models. 

Recently, there is a major interest in the research community for providing 
efficient similarity query processing for the World Wide Web. For example, in 
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[76] a relational algebra is proposed for web and multimedia data, whereas in 
[39] several similarity-based strategies are studied. With the exploding growth 
of the WWW, such techniques will be valuable towards effective and efficient 
web search. 



Epilogue 

The last few decades, research in spatial and high-dimensional databases has 
been very significant, and some very efficient query processing techniques have 
been proposed. These efficient techniques are usually supported by sophisti­
cated access methods, enabling the indexing of the underlying dataset and the 
pruning of irrelevant database parts. Applications that require the manipulation 
of multidimensional datasets range from simple geographic applications (e.g., 
GIS) to large multimedia databases. Although the data characteristics may 
be different in each application, the proposed query processing techniques are 
mainly based on the filter-refinement processing methodology. The target is, 
during processing, to quickly discard irrelevant database parts in the filter step, 
and perform a detailed processing of the candidate set.in the refinement step. 
The filter step is supported by indexing schemes, whereas the refinement step 
is performed by considering the dataset details. 

Several indexing schemes have been proposed to handle multidimensional 
datasets. Amongst these schemes, the R-tree family is the most influential. 
Indeed, R-tree variations have been successfully applied to diverse research 
fields ranging from spatial and spatiotemporal databases, to data mining.and 
OLAP applications. The simplicity of the structure and the resemblance to 
the ubiquitous B-tree are two of the main motivations for its use in research 
prototypes and commercial systems. Efficient algorithms for range, nearest 
neighbor and join queries for the R-tree have been proposed and evaluated 
analytically and experimentally. 

NN queries are very significant in spatial and multimedia applications. They 
allow the determination of the k closest objects with respect to a query object. 
The "closeness" is determined by means of a distance measure (e.g. Euclidean). 
This problem has been addressed before in the context of computational geom­
etry, and recently a lot of research work has been performed from the database 
point of view. A naive way to process a fc-NN query is to use repetitive range 
queries, by adjusting the search distance. Although simple, this approach can 
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lead to significant performance degradation because either too few or too many 
objects are returned. In order to solve this problem, efficient NN algorithms 
have been proposed, which they assume the existence of an efficient indexing 
scheme. Specialized methods for high-dimensional datasets have also been 
proposed. The latter methods are extremely useful in multimedia applications, 
where objects are transformed to a high-dimensional space, by using selected 
features. 

The research efforts in spatial databases paved the way for efficient query 
processing in spatiotemporal databases, where time plays a critical role. Sev­
eral specialized access methods have been proposed to support time in data 
representation and user queries. In a database of moving objects, it is important 
to track object movement to either perform trajectory analysis, or to predict 
the future location of the moving objects. Query processing in such a case be­
comes very difficult, because the continuous object movement must be handled 
carefully. 

In order to support spatial or multimedia query optimization, several cost 
models have been proposed that estimate the cost of a A;-NN query. Cost esti­
mation is very important, because it can be used during query optimization to 
determine an efficient query execution plan. Although the derivation of cost 
estimations for range queries are relatively easy, this is not true in the case of 
NN queries. The main problem is the estimation of the distance from the query 
point to its fc-th nearest neighbor. 

The performance of a database system can be improved either by exploiting 
more efficient algorithms and access methods, or by increasing the processing 
power of the computer system. An example of the latter case is the exploitation 
of multiple resources (disks, processors or both) towards more efficient data 
processing. Research in parallel and distributed database systems studies effi­
cient data storage and processing techniques, aiming at the decrease of query 
response time. 

In this book, we touched all the aforementioned research issues, by study­
ing selected problems in NN search, by assuming a database point of view. 
However, the recent literature in NN search studies several interesting research 
directions in the area, such as: 

• the development of efficient access methods and algorithms for NN query 
processing in data streams, 

the study of more efficient methods for NN search in location-aware services, 

the application of NN search in clustering algorithms for data mining, 

the development of accurate cost models for cost estimation of complex 
queries involving nearest neighbors (e.g., closest-pair queries), 
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• the study of more efficient techniques for querying moving objects on fixed 
spatial networks, where the objects' movement is constraint by an underlying 
network, 

• the application of NN search to other disciplines like similarity search in 
biological data, similarity search in web usage data and similarity of moving-
object trajectories. 
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