

Nearest Neighbor Search

A Database Perspective

SERIES IN COMPUTER SCIENCE

Series Editor: Rami G. Melhem
University of Pittsburgti
Pittsburgli, Pennsylvania

DYNAMIC RECONFIGURATION
Architectures and Algorithms
Ramachandran Vaidyanathan and Jerry L. Trahan

ENGINEERING ELECTRONIC NEGOTIATIONS
A Guide to Electronic Negotiation Technologies for the Design and
Implementation of Next-Generation Electronic Markets—Future
Silkroads of eCommerce
Michael Strobel

HIERARCHICAL SCHEDULING IN PARALLEL AND CLUSTER
SYSTEMS
Sivarama Dandamudi

MOBILE IP
Present State and Future
Abdul Sakib Mondal

NEAREST NEIGHBOR SEARCH
A Database Perspective
Apostolos N. Papadopoulos and Yannis Manolopoulos

OBJECT-ORIENTED DISCRETE-EVENT SIMULATION WITH JAVA
A Practical Introduction
Jose M. Carrido

A PARALLEL ALGORITHM SYNTHESIS PROCEDURE FOR HIGH-
PERFORMANCE COMPUTER ARCHITECTURES
Ian N. Dunn and Gerard G. L. Meyer

PERFORMANCE MODELING OF OPERATING SYSTEMS USING
OBJECT-ORIENTED SIMULATION
A Practical Introduction
Jose M. Garrido

POWER AWARE COMPUTING

Edited by Robert Graybill and Rami Melhem

THE STRUCTURAL THEORY OF PROBABILITY
New Ideas from Computer Science on the Ancient Problem of
Probability Interpretation
Paolo Rocchi

Nearest Neighbor
Search

A Database Perspective

Apostolos N. Papadopoulos and Yannis Manolopoulos
Department of Informatics
Aristotle University
Thessaloniki, Greece

^ Sprin ger

ISBN 0-387-22963-9

©2005 Springer Science-H Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science-I-Business Media, Inc.,
233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection
with reviews or scholarly analysis. Use in connection with any form of information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as
to whether or not they are subject to proprietary rights.

Printed in the United States of America. (BS/DH)

9 8 7 6 5 4 3 2 1

springeronline.com

Contents

List of Figures ix
List of Tables xiii
Preface xvii
Acknowledgments xxi

Part I Fundamental Issues

1. SPATIAL DATABASE CONCEPTS 3

1 Introduction 3

2 Spatial Query Processing 4

3 Access Methods 6

4 Handling High-Dimensional Data 8

5 Spatial Data Support in Commercial Systems 9

6 Summary 10

7 Further Reading 11

2. THE R-TREE AND VARIATIONS 13

1 Introduction 13

2 The Original R-tree 13

3 Dynamic R-tree Variants 15
3.1 The R+-tree 15
3.2 The R*-tree 16
3.3 The Hilbert R-tree 16

4 Static R-tree Variants 17
4.1 The Packed R-tree 18
4.2 The Hilbert Packed R-tree 18

vi NEAREST NEIGHBOR SEARCH

4.3 The STR Packed R-tree 18

5 Performance Issues 18

6 R-trees in Emerging Applications 19

7 Summary 20

8 Further Reading 20

Part II Nearest Neighbor Search in Spatial and Spatiotemporal Databases

3. NEAREST NEIGHBOR QUERIES 25

1 Introduction 25

2 The Nearest Neighbor Problem 25

3 Applications 27

4 Nearest Neighbor Queries in R-trees 28

5 Nearest Neighbor Queries in Multimedia Applications 31

6 Summary 34

7 Further Reading 34

4. ANALYSIS OF NEAREST NEIGHBOR QUERIES 37

1 Introduction 37

2 Analytical Considerations 38
2.1 Preliminaries 38
2.2 Estimation of dnn and dm 40
2.3 Performance Estimation 42

3 Performance Evaluation 44
3.1 Preliminaries 44
3.2 Experimental Results 45

4 Summary 45

5 Further Reading 47

5. NEAREST NEIGHBOR QUERIES

IN MOVING OBJECTS 49

1 Introduction 49

2 Organizing Moving Objects 50

3 Nearest Neighbor Queries 52
3.1 The NNS Algorithm 56
3.1.1 Algorithm NNS-a 57
3.1.2 Algorithm NNS-b 61
3.2 Query Processing with TPR-trees 62

Contents vii

4 Performance Evaluation 66
4.1 Preliminaries 66
4.2 Experimental Results 68

5 Summary 71

6 Further Reading 72

Part III Nearest Neighbor Search with Multiple Resources

6. PARALLEL AND DISTRIBUTED DATABASES 75

1 Introduction 75

2 Multidisk Systems 76

3 Multiprocessor Systems 80

4 Distributed Systems 83

5 Summary 84

6 Further Reading 85

7. MULTIDISK QUERY PROCESSING 87

1 Introduction 87

2 Algorithms 88
2.1 The Branch-and-Bound Algorithm 88
2.2 Full-Parallel Similarity Search 88
2.3 Candidate Reduction Similarity Search 91
2.4 Optimal Similarity Search 97

3 Performance Evaluation 98
3.1 Preliminaries 98
3.2 Experimental Results 102
3.3 Interpretation of Results 105

4 Summary 107

5 Further Reading 108

8. MULTIPROCESSOR QUERY PROCESSING 109

1 Introduction 109

2 Performance Estimation 110

3 Parallel Algorithms 111
3.1 Adapting BB-NNF in Declustered R-trees 111
3.2 The Parallel Nearest Neighbor Finding (P-NNF) Method

113
3.3 When Statistics are not Available 116

viii NEAREST NEIGHBOR SEARCH

3.4 Correctness of P-NNF Algorithms 117

4 Performance Evaluation 117
4.1 Preliminaries 117
4.2 The Cost Model 118
4.3 Experimental Results 120
4.4 Interpretation of Results 122

5 Summary 124

6 Further Reading 125

9. DISTRIBUTED QUERY PROCESSING 127

1 Introduction 127

2 Query Evaluation Strategies 129
2.1 Algorithms 129
2.2 Theoretical Study 130
2.3 Analytical Comparison 139

3 The Impact of Derived Data 142

4 Performance Evaluation 146
4.1 Preliminaries 146
4.2 Cost Model Evaluation 146
4.3 Experimental Results 147

5 Discussion 150

6 Summary 151

7 Further Reading 151

Epilogue 153

References 157

List of Figures

1.1 Examples of spatial datasets. 4

1.2 Examples of range and NN queries in 2-d space. 5

1.3 Examples of spatial join queries. 6

1.4 A set of polygons and their corresponding MBRs. 7

1.5 Filter-refinement query processing. 8

1.6 Intersection and containment queries. 8

1.7 Mapping time series to multidimensional vectors. 9

2.1 An R-tree example. 14

2.2 An R+-tree example. 16

2.3 Examples of space-filling curves in 2-d space. 17

2.4 MBRs of leaf nodes for R-tree, R* -tree and STR packed

R-tree. 19

3.1 Examples of 2-NN and 4-NN queries using the L2 norm. 26

3.2 Answering a 3-NN query by using repetitive range queries. 27

3.3 MINDIST and MINMAXDIST betv -̂een a point P and

two rectangles R\ and R2- 30

3.4 NN search algorithm for R-trees. 31

4.1 Two equivalent query execution plans. 37
4.2 (a): exampleofProposition4.1, (b): example of Propo

sition 4.2. 40
4.3 When the query point P coincides with a vertex of

the MBR, then the maximum difference {a) between
MINDIST and MINMAXDIST is obtained. 42

4.4 Example of an enlarged data page. 43

4.5 Datasets used in the experiments. 44

IX

NEAREST NEIGHBOR SEARCH

5.1 Generation of a moving bounding rectangle. 51

5.2 A NN query example in a moving dataset. 52

5.3 Visualization of the distance betvi'een a moving object

and a moving query. 55

5.4 Relative distance of objects with respect to a moving query. 55

5.5 Nearest neighbors of the moving query for fc = 2 (top)

and A; = 3 (bottom). 56

5.6 The NNS-a algorithm. 59

5.7 The four different cases that show the relation of a new

object to the current nearest neighbors. 62

5.8 The NNS-b algorithm. 63

5.9 The modify-CNN-list procedure. 64

5.10 Pruning techniques. 65

5.11 The NNS-CON algorithm. 66

5.12 Results for different values ofthe number of nearest neighbors. 69

5.13 CPU cost over FO cost. 69

5.14 Results for different buffer capacities. 70

5.15 Results for different values of the travel time. 71

5.16 Results for different space dimensions. 71

5.17 Results for different database size. 72

6.1 Parallel and distributed database systems. 75

6.2 Example of disk array architecture. 77

6.3 Independent R-trees. 78

6.4 R-tree with super-nodes. 78

6.5 MX R-tree example. 79

6.6 Parallel architectures. 81

6.7 R-tree example. 82

6.8 Declustering an R-tree over three sites. 82

6.9 Horizontal and vertical fragmentation. 83

6.10 Distributed database architecture. 84

7.1 MINDIST, MINMAXDISTandMAXDISThe-
tween a point P and two rectangles i?i and i?2- 90

7.2 Illustration of pruning and candidate selection. 91

7.3 Example of an R*-tree with 13 nodes and 3 entries per node. 93
7.4 Illustration of the first three stages of the CRSS algo

rithm. Different candidate runs are separated by guards,
indicated by shaded boxes. 93

List of Figures xi

7.5 The most important code fragments of the CRSS algorithm. 95
7.6 Datasets used in performance evaluation. 99
7.7 The simulation model for the system under consideration. 100
7.8 Number of visited nodes vs. query size for 2-d data sets. 103
7.9 Number of visited nodes (normalized to WOPTSS) vs.

query size for synthetic data in 10-d space. 103
7.10 Response time (sees) vs. query arrival rate (A). 104
7.11 Response time (normalized to WOPTSS) vs. number

of disks (A=5 queries/sec, dimensions=5). 104
7.12 Response time (normalized to WOPTSS) vs. num

ber of nearest neighbors (Left: A=l queries/sec, Right:
A=20 queries/sec). 104

7.13 BBSS will visit all nodes associated with the branch of
J?i, leading to unnecessary accesses. 106

8.1 Declustering an R-tree over three sites. 109
8.2 Measured and Estimated number of leaf accesses vs.

the number k of nearest neighbors. 112
8.3 Basic difference between BB-NNF and P-NNF methods. 114

8.4 MINDIST, MINMAXDIST and MAXDIST be
tween a point P and two rectangles R\ and i?2. 114

8.5 The IEEE 802.3 (CSMA/CD bus) frame layout. 118
8.6 Graphical representation of datasets used for experimentation. 119
8.7 Calculation of the Response Time of a query. 120
8.8 Response time (in msecs) vs. k (secondary sites=10,

NSeff = lOMbit/sec). 121
8.9 Number of transmitted frames, time to process the upper

R-tree levels and number of transmitted objects, vs. k
(secondary sites=10, NS^ff ^ 10Mbit/sec). 122

8.10 Response time (in msecs) vs. number of secondary servers. 123

9.1 The abstract system architecture. 127
9.2 Performance of methods for scenario A (logarithmic scales). 140
9.3 Performance of methods for scenario B (logarithmic scales). 141
9.4 (a) Use of two MBBs for discrimination, (b) The nearest

neighbor of P is not in MBBl, (c) A query point P
enclosed by many MBBs. 143

9.5 Cost model evaluation (logarithmic scales). 147

9.6 Measured response time for scenario A (logarithmic scales). 148
9.7 Measured response time for scenario B (logarithmic scales). 150

List of Tables

3.1 Distances between a query object and some data objects. 33
4.1 Basic notations used throughout the analysis. 39
4.2 Number of leaf accesses vs. datapopulation. Data=Uniform,

Fanout=50. 46
4.3 Number of leaf accesses vs. fanout. Data=Uniform,

Population=50,000. 46

4.4 Number of leaf accesses vs. fanout. Data=MG points,
Population w 9,000. 46

5.1 NN queries for different query and data characteristics. 54
5.2 Parameters and corresponding values. 67

5.3 Experiments conducted. 68
7.1 Description of query processing parameters. 101
7.2 Description of disk characteristics (model HP-C220A) [108]. 101
7.3 Scalability with respect to population growth: Response

time (sees) vs. population and number of disks, (set:
gaussian, dimensions: 5, NNs: 20, A=5 queries/sec). 105

7.4 Scalability with respect to query size growth: Response
time (sees) vs. number of nearest neighbors and number
of disks, (set: gaussian, dimensions: 5, population:
80,000, A=5 queries/sec). 105

7.5 Qualitative comparison of all algorithms (a \J means
good performance). 107

8.1 Description of datasets. 118
8.2 Response Time vs. network speed (Secondary sites=10,

NN requested = 10, 100 and 200). 124
9.1 Symbols, definitions and corresponding values. 130

xm

About the Authors

Apostolos N. Papadopoulos was born in Eleftheroupolis, Greece in 1971. He
received his 5-year Diploma degree in Computer Engineering and Informatics
from the University of Patras and his Ph.D. degree from Aristotle University of
Thessaloniki in 1994 and 2000 respectively. He has published several research
papers in journals and proceedings of international conferences. From March
1998 to August 1998 he was a visitor researcher at INRIA research center in
Rocquencourt, France, to perform research in benchmarking issues for spa
tial databases. Currently, he is a Lecturer in the Department of Informatics of
Aristotle University of Thessaloniki. He is a member of the Greek Computer
Society and the Technical Chamber of Greece. His research interests include
spatial and spatiotemporal databases, data stream processing, parallel and dis
tributed databases, data mining, physical database design.

Yannis Manolopoulos was born in Thessaloniki, Greece in 1957. He received
his 5-year Diploma degree in Electrical Engineering and his Ph.D. degree in
Computer Engineering from Aristotle University of Thessaloniki in 1981 and
1986 respectively. Currently he is Professor at the Department of Informatics
of the same university. He has been with the Department of Computer Science
of the University of Toronto, the Department of Computer Science of the Uni
versity of Maryland at College Park and the Department of Computer Science
of the University of Cyprus. He has (co-)authored over 140 papers in refereed
scientific journals and conference proceedings. He has also (co-)authored sev
eral textbooks in Greek and two monographs on "Advanced Database Indexing"
and "Advanced Signature Indexing for Multimedia and Web Applications" by
Kluwer. He served as PC (co-)chair of the 8th National Computer Conference
(2001), the 6th ADBIS Conference (2002), the 5th WDAS Workshop (2003), the
8th SSTD Symposium (2003), the 1st Balkan Conference in Informatics (2003),
and the 16th SSDBM Conference (2004). He is member of the Editorial Board
of The Computer Journal and the International Journal of Data Warehousing

XV

xvi NEAREST NEIGHBOR SEARCH

and Mining. Also, he is Vice-chair of the Greek Computer Society and Chair of
the Greek Section of ACM SIGKDD. His research interests include databases,
data mining, data/file structures and algorithms, and performance evaluation of
storage subsystems.

Preface

Modern applications are both data and computationally intensive and require
the storage and manipulation of voluminous traditional (alphanumeric) and
non-traditional data sets, such as images, text, geometric objects, time-series,
audio, video. Examples of such emerging application domains are: geograph
ical information systems (GIS), multimedia information systems, CAD/CAM,
time-series analysis, medical information systems, on-line analytical process
ing (OLAP), data mining. These applications pose diverse requirements with
respect to the information and the operations that need to be supported, and
therefore from the database perspective, new techniques and tools need to be
developed towards increased processing efficiency.

Spatial database management systems aims at supporting queries that involve
the space characteristics of the underlying data. For example, a spatial database
may contain polygons that represent building footprints from a satellite image
or the representation of lakes, rivers and other natural objects. It is important to
be able to query the database by using predicates that are related to the spatial
and geometric object characteristics. Examples of such queries are:

• the range query: given a rectangle R, determine objects in the database that
intersect R,

• the nearest neighbor query: given an object O, determine the k objects from
the database that are closer to O,

• the spatial join query: given two sets of objects, determine the pairs that
satisfy a spatial predicate (e.g., intersection, containment),

• the closest-pair query: given two sets of objects, determine the k pairs that
have the k smallest distances amongst all possible pairs.

A spatial database system is enhanced by special tools to handle such queries.
These tools include new data types, sophisticated data structures and algorithms

xvii

xviii NEAREST NEIGHBOR SEARCH

for efficient query processing that differ from tlieir counterparts in a conservative
alphanumeric database. The contribution of the research community over the
past twenty years includes a plethora of research works towards this goal.

Apart from exploiting novel techniques for efficient spatial query processing,
another direction is to use multiple resources (processors and/or disks) towards
more efficient processing. If several processors are used to solve a problem,
the total processing time is likely to be reduced, due to the parallel execution of
several independent operations. The purpose of this research monograph is to
study efficient processing techniques for nearest neighbor search, by assuming
a database point of view.

Intended Audience
This book can be used by students, researchers and professionals who are

interested in nearest neighbor search and related issues. More specifically, the
book will be a valuable companion for postgraduate students who are studying
spatial database issues, and for instructors who can use the book as a refer
ence for specialized topics in nearest neighbor query processing techniques.
Researchers in several related areas will find this book useful, since it covers
many important research directions.

Prerequisites
Each book chapter is self-contained to help the reader focus on the corre

sponding issue. Moreover, the partitioning of the chapters in parts will be very
convenient in focusing in different research issues, according to the reader's
needs. However, at least a basic knowledge in indexing, query processing and
optimization in traditional database systems, will be very helpful in understand
ing more easily the issues covered by each chapter.

Book Organization
The content of this monograph is based on research performed by the authors

in the Data Engineering Lab of the Department of Informatics of Aristotle Uni
versity during the last years. The material is organized in three parts, composed
of nine chapters in total, covering different issues related to nearest neighbor
search.

In Part I we cover fundamental issues regarding spatial databases. This
part is composed of three chapters. Chapter 1 performs a gentle introduction
to spatial database concepts, by discussing issues related to query processing,
indexing and handling multidimensional datasets. In Chapter 2 we focus on the
R-tree family of spatial access methods, and discuss issues related to indexing
spatial objects. Several important R-tree variations are also briefly presented.

PREFACE xix

Part II is composed of three chapters. Chapter 3 discusses in detail nearest
neighbor query processing in R-trees, applications of nearest neighbor search
and some important issues regarding nearest neighbor search in multimedia
database systems. In Chapter 4 we study the issue of cost estimation in nearest
neighbor queries using fractal concepts. Finally, Chapter 5 studies nearest
neighbor queries in spatiotemporal databases, and more specifically in moving
objects databases. Querying moving objects poses new challenges since the
answer to a query change over time, due to the continuous object movement.

Part III covers parallel and distributed processing of nearest neighbor queries.
Chapter 6 gives the appropriate background in parallel and distributed databases,
and discusses several important issues. Chapter 7 studies the problem of near
est neighbor query processing in a single-processor multidisk system. In such a
system the dataset is declustered among all disks and therefore several disk ac
cess operations can be performed in parallel, reducing the query response time.
Algorithms are presented and experimental results are given demonstrating the
performance efficiency. Chapter 8 studies nearest neighbor query processing
in a system composed of many disks and many processors. The dataset and the
corresponding access method are declustered among a number of computers.
The challenge is to provide efficient processing techniques to answer the near
est neighbor query by exploiting parallelism. Chapter 9 studies the problem
in a similar environment, by allowing each computer to manage its own local
database independently from the others.

In the Epilogue we give a brief summary of the book and raise some important
issues for further research in the area.

APOSTOLOS N . PAPADOPOULOS

YANNIS MANOLOPOULOS

To our families.

Acknowledgments

The material of this monograph is based on research performed in the Data
Engineering Lab of the Department of Informatics of the Aristotle Univer
sity, during the last years. We are very grateful to all who supported us dur
ing the preparation of this monograph. Especially, we would like to thank
our co-authors and colleagues Antonio Corral, Yannis Karidis, Dimitris Kat-
saros, Maria Kontaki, Alexandros Nanopoulos, Katerina Raptopoulou, Anto-
nis Sidiropoulos, Yannis Theodoridis Theodoros Tzouramanis, Michael Vassi-
lakopoulos and Dimitris Halvatzis for their helpful comments and suggestions.
Moreover, we would like to thank Ana Bozicevic from Kluwer Academic Pub
lishers, for her patience and encouragement towards the successful completion
of this project.

XXI

FUNDAMENTAL ISSUES

Chapter 1

SPATIAL DATABASE CONCEPTS

1. Introduction
Modem applications are both data and computationally intensive and require

the storage and manipulation of voluminous traditional (alphanumeric) and non-
traditional data sets, such as images, text, geometric objects, time series, audio,
video. Examples of such emerging application domains are: geographical in
formation systems (GIS), multimedia information systems, time-series analysis,
medical information systems, on-line analytical processing (OLAP) and data
mining. These applications impose diverse requirements with respect to the
information and the operations that need to be supported. Therefore from the
database perspective, new techniques and tools need to be developed towards
increased processing efficiency.

The exploitation of a DBMS towards efficient support of such applications
is being considered mandatory to provide fast access and high data availability.
However, since traditional DBMSs can not easily support such applications,
new or modified components are needed. Faster storage managers should be
developed; the query processor and the query optimizer must take into consid
eration the new data types; the transaction processor must be enhanced with
special features to cope with the load posed by users, towards response time
reduction and throughput increase.

The main goal of a spatial database system is the effective and efficient
handling of spatial data types in two, three or higher dimensional spaces, and
the ability to answer queries taking into consideration the spatial data properties.
Examples of spatial data types are:

• point: characterized by a pair of (x,y) values,

• line segment: characterized by a pair of points.

4 NEAREST NEIGHBOR SEARCH

• rectangle: characterized by its lower-left and upper-right comers,

• polygon: comprised by a set of points, defining its comers.

Figure 1.1 represents examples of spatial datasets. In Figure 1.1(a) the Eu
ropean countries are represented as polygons, whereas in Figure 1.1(b) a GIS
map is shown which contains information about a specific geographic area of
Northern Greece.

/ ' -.fV ••./ /

• - . . • • > • > • V - . • • ••

" * • -/' v • • r:... , . . .

(a) the European countries (b) a map example

Figure 1.1. Examples of spatial datasets.

2. Spatial Query Processing
In traditional database systems user queries are usually expressed by SQL

statements containing conditions among the attributes of the relations (database
tables). A spatial database system must be equipped with additional function
ality to answer queries containing conditions among the spatial attributes of
the database objects, such as location, extend and geometry. The most common
spatial query types are:

• topological queries (e.g., find all objects that overlap or cover a given object),

• directional queries (e.g., find all objects that lie north of a given object),

• distance queries (e.g., find all objects that lie in less than a given distance
from a given object).

The aforementioned spatial operations comprise basic primitives for develop
ing more complex ones in applications that are based on management of spatial
data, such as GIS, cartography and many others. Let us examine three queries

Spatial Database Concepts 5

that are widely used in spatial applications and have been studied thoroughly
in the literature:

• range query: is the most common topological query. A query area R is
given and all objects that intersect or are contained in R are requested.

• nearest neighbor (NN) query: is the most common distance query. Given a
query point P and a positive integer k, the query returns the k objects that
are closer to P, based on a distance metric (e.g., Euclidean distance).

• spatial join query: is used to determine pairs of spatial objects that satisfy a
particular property. Given two spatial datasets DA and DB and a predicate
0, the output of the spatial join query is a set of pairs Oa,Oh such that
Oa e DA, Ob e DB and 0{Oa, Ob) is true.

• closest-pair query: is a combination of spatial join and nearest neighbor
queries. Given two spatial datasets DA and DB, the output of a fc closest-
pairs query is composed of k pairs Oa,Ob such that Oa G DA, Ob G DB-
These k pair-wise distances are the smallest amongst all possible object
pairs.

Figure 1.2 presents examples of range and NN queries for a database con
sisting of points in 2-d space. In Figure 1.2(a) the answer to the range query is
comprised by the three data points that are enclosed by R. In Figure 1.2(b) the
answer to the NN query is composed of the five data points that are closer to P.

O
O o
o o

o

®

o o
o

o
o
o o

o

o

(a) rectangular range query
O

(b) nearest-neighbor query for k=5

Figure 1.2. Examples of range and NN queries in 2-d space.

Figure 1.3 gives two examples of spatial join queries. In Figure 1.3(a) the
query asks for all intersecting pairs of the two datasets (intersection spatial
join), whereas in Figure 1.3(b) the query asks for all pairs Oa, Ob such that Ob
is totally enclosed by Oa (containment spatial join).

A spatial DBMS must efficiently support spatial queries. Towards this goal,
the system must be able to select an efficient query execution plan (QEP) for

NEAREST NEIGHBOR SEARCH

81
A1

B2

A2

Spatial join for intersection
Result: {{A1,B1), (A1,B2), (A2,B1)}

(a)

A1
81

Ba

84

B3 {
1

L J
A2

Spatial join for containment
Result: {(A2,B2), (A2,B3)}

(b)

Figure 1.3. Examples of spatial join queries.

a complex spatial query. Determining the best execution plan for a spatial
query requires tools for measuring (more precisely, estimating) the number of
(spatial) data items that are retrieved by a query as well as its cost, in terms of
I/O and CPU effort. As in traditional query optimization, such tools include
cost-based optimization models, exploiting analytical formulae for selectivity
(the hit percentage) and cost of a query, as well as histogram-based techniques.

In this book we focus on methods and techniques for the processing of NN
queries. As we show later, NN queries play an important role not only in
spatial database systems but in multimedia database systems as well, because
they allow the retrieval of similar objects according to a distance metric.

3. Access Methods
The processing of spatial queries presents significant requirements, due to the

large volumes of spatial data and the complexity of both objects and queries [85].
Efficient processing of spatial queries capitalize on the proximity of the objects
to focus the searching on objects that satisfy the queries and eliminate the
irrelevant ones. The target is to avoid the sequential scanning of the database
which is an extremely costly operation.

In traditional database systems, access methods like B-trees and hashing
offer considerable improvements in query response time in comparison to the
sequential database scanning. Similarly, spatial access methods (SAMs) pro
vide an efficient way of organizing the data and processing spatial queries. In
several textbooks and research reports there is a differentiation between point
access methods (PAMs), used to manipulate points, and spatial access methods
(SAMs) used to manipulate arbitrary spatial objects. In this book we use the
term SAM for both. Several spatial access methods have been proposed in the

Spatial Database Concepts

literature, with different characteristics and performance. Most of the proposed
techniques are based on hierarchical (tree-like) structures and offer efficient
processing to specific types of queries.

Most of the spatial access methods organize the underlying data based on
object approximation . Therefore, complex spatial objects are approximated
by simpler ones to support efficient indexing. The most common spatial ap
proximation is the minimum bounding rectangle (MBR for short), which is
the minimum rectangle that encloses the detailed object geometry. Figure 1.4
presents a set of polygons and their corresponding MBRs.

Figure 1.4. A set of polygons and their corresponding MBRs.

The majority of the access methods are used in conjunction with the filter-
refinement processing paradigm. More specifically, to process a query a two-
step procedure is followed, comprised by the following phases:

1 filter phase: this phase determines the collection of all objects whose MBRs
satisfy the given query. Since we can not yet determine if these objects
satisfy the query, they form the candidate set.

2 refinement phase: the actual geometry of each member of the candidate set
is examined to eliminate false alarms and to find the answer to the query.

The two processing phases are illustrated in Figure 1.5. The filtering phase
should be fast and determine the candidates based on the objects' approxima
tions. Since the processing at this stage is performed by means of approxi
mations (e.g., MBRs) the candidate set may contain some false alarms. Two
simple examples of intersection and containment queries are given in Figure
1.6. If two MBRs intersect each other, this is not necessarily true for the under
lying objects (Figure 1.6(a)). Also, if an MBR is totally enclosed by another
MBR, then we can not safely judge about the containment of the underlying
objects (Figure 1.6(b)).

Although in general the filter step cannot determine the inclusion of an object
in the query result, there are few operators (mostly directional ones) that allow
for finding query results from the filter step. This is shown in Figure 1.5 by
the existence of hits (i.e., answers to the query) in the filter step. The use of a
spatial access method provides fast processing of the filter step to discard data
objects that can not contribute to the query result.

NEAREST NEIGHBOR SEARCH

(1)
filter step

(2)
refinement step

Figure 1.5. Filter-refinement query processing.

1R2

(a) intersection test (b) containment test

Figure 1.6. Intersection and containment queries.

Among the significant number of spatial access methods that have been
proposed in the literature, the R-tree [36] became very popular because of its
simplicity, its good average performance and its ability to handle efficiently
higher-dimensional data (up to 20 dimensions). R-trees were proposed to solve
the indexing problem of rectangles in VLSI design. However, subsequent im
provements and enhancements of the basic R-tree structure helped researchers
to apply the R-tree successfully in other fields as well (e.g., GIS, multimedia
databases). Due to their importance and their wide acceptance, R-trees are
presented separately in detail in the next chapter.

4. Handling High-Dimensional Data
In spatial applications data are usually based on two or three dimensions.

However, many applications (e.g., multimedia) assume that data are multidi
mensional, embedded in more dimensions. For example, using the GEMINI
approach [28] for indexing multimedia data a time sequence (or time series) can

Spatial Database Concepts 9

be represented as an A^-dimensional vector where A'' is the number of Discrete
Fourier Transform (DFT) coefficients. An example is given in Figure 1.7.

Figure 1.7. Mapping time series to multidimensional vectors.

By using suitable transformations, this technique has been successfully ap
plied for other data types as well (e.g., audio, color images, video). In order to
organize these multidimensional vectors a spatial access method can be used.
Therefore, we see that even if the original data are not spatial in nature, spatial
access methods can still be effectively utilized to organize and efficiently query
these datasets.

It has been observed that for very high dimensionalities, most hierarchical
spatial access methods degenerate. The reason for this degeneration is twofold:

1 By increasing space dimensionality more space is required to store a single
vector, and therefore the index fanout (number of children per node) is
reduced considerably resulting in disk accesses increase, and

2 The good properties of index structures do longer hold, since dimensionality
increase results in excessive overlap of intermediate nodes, and therefore
the discrimination power of the structure is decreased considerably.

Therefore, specialized access methods have been developed to attack the
dimensionality curse problem. Among the plethora of the proposed multidime-
sional access methods we note the TV-tree [63], the X-tree [13]. Some of the
ideas for NN query processing presented in this book are also applicable to
these methods along with the corresponding modifications.

5. Spatial Data Support in Commercial Systems
The support of complex data types (non alphanumeric) and access methods

is a key issue in modem database industry, since it allows the DBMS to extend

10 NEAREST NEIGHBOR SEARCH

its functionality beyond pure relational data handling. The database industry
has performed some very significant steps towards spatial data and spatial query
processing support. Among these efforts we highlight the following:

• Mapinfo SpatialWare: SpatialWare extends an Informix, Microsoft SQL
Server, IBM DB2 or Oracle database to handle spatial data such as points,
lines and polygons. It extends database capabilities avoiding a middleware
architecture. All functionality is contained directly into the DBMS environ
ment. SpatialWare is implemented in the following ways: 1) in Informix as
a datablade, 2) in SQL Server using the extended stored procedure mecha
nism, 3) in IBM DB2 as an extender, and 4) in Oracle as spatial server. Spa
tialWare provides R-tree support for spatial data indexing purposes [74,75].

• Oracle: Oracle Locator, which is a feature of Oracle Intermedia, provides
support for location-based queries in Oracle 9i DBMS. Geographic and
location data are integrated in the Oracle 9i server, just like ordinary data
types like CHAR and INTEGER. Oracle Spatial provides location-based
facilities allowing the extension of Oracle-based applications. It provides
data manipulation tools for accessing location information such as road
networks, wireless service boundaries, and geocoded customer addresses.
Both Oracle Locator and Oracle Spatial provide support for linear quadtrees
and R-trees for spatial data indexing purposes [57, 84].

• IBM Informix and DB2: In Informix, the R-tree is built-in the database
kernel and works directly with the extended spatial data types. The Informix
R-tree implementation supports full transaction management, concurrency
control, recovery and parallelism. A detailed description of the Informix
R-tree implementation can be found in [43]. A description of spatial data
handling in a DB2 database can be found in [3].

6. Summary
In order to support applications that require the manipulation of spatial data,

the DBMS must be enhanced with additional capabilities regarding data repre
sentation, organization, query processing and optimization.

Due to the complexity and volume of spatial datasets, access methods are
required to guarantee acceptable query processing performance. Usually, spa
tial access methods work on object approximation instead of the detailed object
spatial characteristics. The most common object approximation is the minimum
bounding rectangle (MBR). The use of object approximation is twofold:

1 it helps in discarding a large number of objects without the need for a
thorough examination of the detailed spatial characteristics, and

Spatial Database Concepts 11

2 it enables the development of efficient and effective access methods. By
means of the filter-refinement processing mechanism efficient spatial query
processors can be developed.

Taking into consideration that objects in diverse application domains can
be modeled as multidimensional points, spatial access methods can be applied
in such cases as well. The problem is that with the increase of the space
dimensionality, severe problems arise, collectively known as the dimensionality
curse. Specialized access methods have been proposed to attack this problem.

Due to the importance of spatial data, several commercial systems have
already enhanced their products with spatial data manipulation capabilities,
enabling the support of geographical information systems and related applica
tions.

7. Further Reading
There are numerous textbooks and monographs that present in detail spa

tial access methods and spatial query processing. The two books of Samet
[111,112] study in detail spatial access methods and their various applications.
Laurini and Thomson in [59] cover several issues regarding spatial access meth
ods and query processing giving emphasis to Geographical Information Sys
tems. Databases issues in Geographical Information Systems are covered in
[2]. In [104], Rigaux, SchoU and Voisard perform a thorough study of spa
tial databases, and cover many important aspects of spatial database systems
including modeling, spatial query languages, and query processing. Spatial
databases are also covered in detail in a recent book by Shekhar and Chawla
[119].

Two very significant introductory research papers for spatial databases have
been written by Gueting [35] and Paradaens [98]. Due to the fact that spatial
joins and closest-pairs queries are both I/O and CPU intensive, there are many
important contributions in the literature [16, 22, 23, 24, 25, 42, 64, 65, 69, 88,
97].

With respect to relevant research papers, one should notice that there is a sig
nificant number of sources. For example, all major conferences on databases,
such as SIGMOD, VLDB, ICDE, PODS, EDBT and others, have special ses
sions on the above topics. In addition, there are other more focused conferences,
such ACM-GIS, SSD/SSTD, SSDBM, SSTDB and others, where these issues
are traditionally discussed.

Chapter 2

THE R-TREE AND VARIATIONS

1. Introduction
In this chapter, we briefly present the R-tree family of spatial access methods,

which has been used extensively in research and industry. In fact, many com
mercial database vendors have adopted the R-tree as a spatial access method to
handle spatial objects in their DBMSs.

Since its first application in VLSI design [36], the R-tree has become one of
the most popular spatial access methods, and it has been successfully applied
to many application domains (e.g., GIS, multimedia databases). Section 2
describes the original R-tree structure. Sections 3 and 4 study briefly dynamic
and static R-tree variations. Some performance issues are covered in Section
5, whereas in Section 6 we discuss the adaptation of the structure in emerging
applications.

2. The Original R-tree
Although, nowadays the original R-tree is being described in many standard

textbooks and monographs on databases [59,72, H I , 112], we briefly recall its
basic properties to make this book self-contained. The R-tree is a hierarchical
data structure based on the B^-tree [52], and it has been proposed as a disk-based
access method to organize rectangles. It is used for the dynamic organization
of a set of d-dimensional geometric objects representing them by the minimum
bounding d-dimensional rectangles (MBRs). Each R-tree node corresponds to
the minimum MBR that bounds its children. The tree leaves contain pointers
to the database objects, instead of pointers to children nodes. The R-tree nodes
are implemented as disk pages.

It must be noted that the MBRs that correspond to different nodes may be
overlapping. Besides, an MBR can be included (in the geometrical sense) in

13

14 NEAREST NEIGHBOR SEARCH

many nodes, but can be associated to only one of them. This means that a
spatial search may visit many nodes, before confirming the existence or not of
a given object MBR. The R-tree has the following fundamental characteristics:

• leaf nodes reside on the same level.

• each leaf contains pairs of the form {R, O), such that R is the MBR that
contains spatially object O,

• every internal node contains pairs of the form (i?, P), vv'here P is a pointer
to a child of the node and R is the MBR that contains spatially the MBRs
contained in this child,

• every node (with the possible exception of the root) of an R-tree of class
(m, M) contains between m and M pairs, where m < [M/2] ,

• the root contains at least two pairs, if it is not a leaf.

Figure 2.1 depicts some objects on the left and an example R-tree on the
right. Data rectangles R\ through RQ are stored in leaf nodes, whereas MBRs
Ra, Rb and Re are hosted at the upper level.

R3

R8

R5

IR6

Ra Rb RG

R1 R2 R3 R4 R5 R6 R 7 R8 R9

Figure 2.1. An R-tree example.

Insertions of new objects are directed to leaf nodes. At each level, the node
that will be least enlarged is chosen. Thus, finally the object is inserted in an
existing leaf if there is adequate space, otherwise a split takes place. Adopting
as driving criterion the minimization of the sum of the areas of the two resulting
nodes, Guttman proposed three alternative algorithms to handle splits, which
are of linear, quadratic and exponential complexity:

• linear split: Choose two objects as seeds for the two nodes, where these
objects are as furthest as possible. Then, consider each remaining object in
a random order and assign it to the node requiring the smaller enlargement
of its respective MBR.

The R-tree and Variations 15

• quadratic split: Choose two objects as seeds for the two nodes, where these
objects if put together create as much empty space as possible (empty space
is the space that remains from the MBR if the areas of the two objects are
ignored). Then, until there are no remaining objects, choose for insertion
the object for which the difference of empty space if assigned to each of
the two nodes is maximized, and insert it in the node that requires smaller
enlargement of its respective MBR.

• exponential split: All possible groupings are exhaustively tested and the
best is chosen with respect to the minimization of the MBR enlargement.

Guttman suggested using the quadratic algorithm as a good compromise be
tween complexity and search efficiency.

In all R-tree variants that have appeared in the literature, tree traversals for
any kind of operations are executed in exactly the same way as in the original R-
tree. Basically, the R-tree variations differ in the way they handle insertions, and
splits during insertions by considering different minimization criteria instead
of the sum of the areas of the two resulting nodes. In the sequel, we present the
most important dynamic and static R-tree variants.

3. Dynamic R-tree Variants
Here we examine some of the most important dynamic R-tree variants. The

methods are characterized dynamic since they effectively handle insertions and
deletions of data. In the next section we briefly discuss some fundamental static
R-tree variations, where the data objects must be known in advance.

3,1 The R+-tree
The R^-tree was proposed as a structure that avoids visiting multiple paths

during point queries and, thus, the retrieval performance could be improved
[115, 127]. This is achieved by using the clipping technique. This means that
the R+'tree does not allow overlapping of MBRS at the same tree level. In turn,
to achieve this, inserted objects have to be divided in two or more parts, which
means that a specific object's entries may be duplicated and redundantly stored
in various nodes. Therefore, this redundancy works in the opposite direction
of decreasing the retrieval performance in case of window queries. However,
the absence of overlap between MBRs in internal nodes improves the overall
performance of the structure.

Another side effect of clipping is that during insertions, an MBR augmenta
tion may lead to a series of update operations in a chain-reaction type. Also,
under certain circumstances, the structure may lead to a deadlock, as, for exam
ple, when a split has to take place at a node with M+1 rectangles, where every
rectangle encloses a smaller one. An R'^-tree for the same dataset illustrated in
Figure 2.1, is presented in Figure 2.2.

16 NEAREST NEIGHBOR SEARCH

Ra W

H3

R9

R4

Ise

R8

1
RS

Ra Rb Re Rd

R1 R2 R4 R7 R8 R9

Figure 2.2. An R"*"-tree example.

3.2 The R*-tree
Although proposed in 1990 [7], R*-trees are still very well received and

widely accepted in the literature as a prevailing performance-wise structure
that is often used as a basis for performance comparisons.

The R*-tree does not obey the limitation for the number of pairs per node and
follows a sophisticated node split technique. More specifically, the technique
of forced reinsertion is applied, according to which, when a node overflows, p
entries are extracted and reinserted in the tree (p being a parameter, with 30%
a suggested optimal value).

Other novel features of R* -trees is that it takes into account additional criteria
except the minimization of the sum of the areas of the produced MBRs. These
criteria are the minimization of the overlapping between MBRs at the same
level, as well as the minimization of the perimeter of the produced MBRs.

Conclusively, the R*-tree insertion algorithm is quite improving in com
parison to that of the original R-tree and, thus, improves the latter structure
considerably as far as retrievals are concerned (up to 50%). Evidently, the
insertion operation is not for free as it is CPU demanding since it applies a
plane-sweep algorithm [101].

3.3 The Hilbert R-tree
The Hilbert R-tree is a hybrid structure based on R-trees and B+-trees [50].

Actually, it is a B^-tree with geometrical objects being characterized by the
Hilbert value of their centroid. Thus, leaves and internal nodes are augmented
by the largest Hilbert value of their contained objects or their descendants,
respectively.

The Hilbert curve is a space-filling curve, which can be used to map multidi
mensional points to the one-dimensional space, by trying to preserve proximity
as much as possible. It is desirable, two points close in space to have nearby
values, and vice-versa. Other well-known space filling curves are the column
wise curve, the row-wise curve and the Peano curve. Among them it has been

The R-tree and Variations 17

shown that the Hilbert curve offers the best performance with respect to prox
imity preservation [45]. Some space-filling curve examples for the 2-d space
are illustrated in Figure 2.3.

0 O—©
(a) column-wise curve (b) Peano curve

Figure 2.3. Examples of space-filling curves in 2-d space.

©—O ©—®
{c) Hilbert curve

For an insertion of a new object, at each level the Hilbert values of the
alternative nodes are checked and the smallest one that is larger than the Hilbert
value of the object under insertion is followed. In addition, another heuristic
used in case of overilow by Hilbert R-trees is the redistribution of objects in
sibling nodes. In other words, in such a case up to s siblings are checked to
find available space and absorb the new object. A split takes place only if all
s siblings are full and, thus, s+1 nodes are produced. This heuristic is similar
to that applied in B*-trees, where redistribution and 2-to-3 splits are performed
during node overflows [52]. According to the authors' experimentation, Hilbert
R-trees were proven to be overall the best dynamic version of R-trees as of the
time of publication. However, this variant is vulnerable performance-wise to
large objects.

4. Static R-tree Variants
There are common applications that use static data. For instance, inser

tions and deletions in census, cartographic and environmental databases are
rare or even they are not performed at all. For such applications, special at
tention should be paid to construct an optimal structure with regards to some
tree characteristics, such as storage overhead minimization, storage utiliza
tion maximization, minimization of overlap or cover between tree nodes, or
combinations of the above. Therefore, it is anticipated that query processing
performance will be improved. These methods are well known in the literature
as packing or bulk loading.

18 NEAREST NEIGHBOR SEARCH

4.1 The Packed R-tree
The first packing algorithm was proposed by Roussopoulos and Leifker in

1985, soon after the proposal of the original R-tree [107]. This first effort
basically suggests ordering the objects according to some spatial criterion (e.g.,
according to ascending x-coordinate) and then grouping them in leaf pages. No
experimental work is presented to compare the performance of this method to
that of the original R-tree. However, based on this simple inspiration a number
of other efforts have been proposed later in the literature.

4.2 The Hilbert Packed R-tree
Kamel and Faloutsos proposed an elaborated method to construct a static

R-tree with 100% storage utilization [49]. In particular, among other heuristics
they proposed sorting the objects according to the Hilbert value of their centroids
and then build the tree in a bottom-up manner.

Experiments showed that the latter method achieves significantly better per
formance than the original R-tree with quadratic split, the R* -tree and the Packed
R-tree by Roussopoulos and Leifker in point and window queries. Moreover,
Kamel and Faloutsos proposed a formula to estimate the average number of
node access, which is independent of the details of the R-tree maintenance
algorithms and can be applied to any R-tree variant.

4.3 The STR Packed R-tree
STR (Sort-Tile-Recursive) is a bulk-loading algorithm for R-trees proposed

by Leutenegger et al. in [61]. Let iV be a number of rectangles in two-
dimensional space. The basic idea of the method is to tile the address space by
using S vertical slices, so that each slice contains enough rectangles to create
approximately yjNjC nodes, where C is the R-tree node capacity.

Initially, the number of leaf nodes is determined, which v&L— \NIC'\. Let
S = \fL. The rectangles are sorted with respect to the x coordinate of the
centroids, and S slices are created. Each slice contains S • C rectangles, which
are consecutive in the sorted list. In each slice, the objects are sorted by the y
coordinate of the centroids and are packed into nodes (placing C objects in a
node). The method is applied until all R-tree levels are formulated.

The STR method is easily applicable to high dimensionalities. Experimental
evaluation performed in [61] has demonstrated that the STR method is generally
better than previously proposed bulk-loading methods. However, in some cases
the Hilbert packing approach performs marginally better.

5. Performance Issues
The R-tree and its variations has been successfully applied for range queries,

NN queries and spatial join queries. Since all the aforementioned R-tree vari-

The R-tree and Variations 19

ations have similar hierarchical structures, the query processing techniques are
applied without any modification. An exception is the R+-tree, which uses mul
tiple occurrences of the same object to avoid MBR overlap of the intermediate
tree nodes, and therefore duplicate elimination must be applied.

Static variants are generally more efficient than dynamic ones, because the
tree structure is more compact, contains fewer nodes and MBR overlap is re
duced in comparison to the dynamic case. Since the dataset is known in advance,
more effective placement of MBRs to nodes is performed in a static R-tree. In
Figure 2.4 the MBRs of the leaf nodes are shown, for three different R-tree vari
ants, namely the R-tree, the R*-tree and the STR packed R-tree. The dataset
used for construction is the hydrography dataset of the Connecticut State, taken
from TIGER [138]. Evidently, the STR packed R-tree generates MBRs with
less overlap than the other methods.

(a) R-tree (b) R*-tree (c) STR packed

Figure 2.4. MBRs of leaf nodes for R-tree, R*-tree and STR packed R-tree.

Although the R-tree does not guarantee a lower bound with respect to the
number of disk accesses required, the average performance is very good, as
many experimental results that appeared in the literature have shown. Moreover,
the R-tree structure paved the way for the development of efficient spatiotem-
poral access methods, like the 3-d R-tree [137], Historical R-trees [81, 82] and
the Time-Parameterized R-tree (TPR-tree) [110] which have been proposed for
spatiotemporal range, NN and join queries. The use of the TPR-tree for NN
query processing in moving objects is studied in detail in Chapter 5.

6. R-trees in Emerging Applications
R-trees have not only been used for storing and processing spatial or spa

tiotemporal data. Modifications to the R-tree structure have been also proposed
to speed-up operations in OLAP applications, data warehouses and data mining.

Variations for OLAP and Data Warehouses store summary information in
internal nodes, and therefore in many cases it is not necessary to search lower
tree levels. Examples of such queries are window aggregate queries, where
dataspace parts that satisfy certain aggregate constraints are requested. Nodes

20 NEAREST NEIGHBOR SEARCH

totally contained by the query window do not have to be accessed. One of the
first efforts in this context is the Ra*-tree variant, which has been proposed for
efficient processing of window aggregate queries, where summarized data are
stored in internal nodes in addition to the MBR [46]. The same technique has
been used in [89] in the case of spatial data warehouses. In [132] the aP-tree
has been introduced to process aggregate queries on planar point data. Finally,
in [90] a combination of aggregate R-trees and B-trees has been proposed for
spatiotemporal data warehouse indexing.

Recently, R-trees have been also used in the context of data mining. In
particular. Spatial Data Mining systems [38] include methods that gradually
refine spatial predicates, based on indexes like the R-tree, to derive spatial
patterns, e.g., spatial association rules [55]. Nanopoulos et al. [78], based on
the R-tree structure and the closest-pairs query, developed the C^P algorithm for
efficient clustering, whereas [79] proposed a density biased sampling algorithm
from R-trees, which performs effective pre-processing to clustering algorithms.

7. Summary
The R-tree structure has been proposed in 1984 by Guttman to efficiently

manipulate rectangles in VLSI chip design. This work influenced many re
searchers towards the application of the structure for other purposes as well.
During the last twenty years many variations of the original structure have been
proposed to either improve the performance of spatial queries, or to enable
the application of the structure to different contexts. Among the most widely
accepted R-tree variants are the R+-tree, the R*-tree and the Hilbert R-tree.
If the dataset is known in advance, more efficient (static) structures can be
constructed resulting in considerable performance improvement. The query
processing capabilities of the structure have been thoroughly studied in the lit
erature, resulting in efficient algorithms for spatial and spatiotemporal query
processing. Recently, the structure has been adopted for query processing pur
poses in emerging application domains such as OLAP, data warehouses and
data mining.

8. Further Reading
In [72] the authors study advanced indexing techniques, including spatial

and spatiotemporal access methods. An excellent survey on multidimensional
access methods can be found in [34], where several R-tree variants are studied
and a very useful classification of access methods is performed. Other access
methods that are based on the concepts of the R-tree but use different techniques
to group objects include the SS-tree [142] and the SR-tree [51]. Several access
methods have been proposed to attack the dimensionality curse problem, such
as the TV-tree [63], the X-tree [13] and the A-tree [109]. A recent detailed

The R-tree and Variations 21

survey for R-trees and variations including query processing techniques can be
found in [73].

II

NEAREST NEIGHBOR SEARCH IN SPATIAL AND
SPATIOTEMPORAL DATABASES

Chapter 3

NEAREST NEIGHBOR QUERIES

1. Introduction

In this chapter we present the NN problem and discuss its applications.
Although NNN queries have been studied for many different access methods,
we focus on the R-tree family. The query processing algorithms are also applied
to other access methods with the appropriate modifications.

The structure of the chapter has as follows. In the next section we give the ba
sic definitions of the problem, whereas in Section 3 we discuss its applications.
Section 4 presents NN query processing in the R-tree access method. Section
5 discusses important issues of NN search in multimedia database systems.

2. The Nearest Neighbor Problem

Assume that the database is composed of A'̂ objects Oi, O2. •••, ON- Given
a query object Oq (which may be contained in the database or not) the NN
query asks for the object 0„„ ^ Oq which is closer to Oq than any other object
in the database. A more general form of the query is to ask for the k nearest
objects instead of just the closest one. Therefore, the fc-NN query asks for the
k database objects that are closer to Oq. The output of a fc-NN query is a list of
objects sorted in increasing distance order from the query object.

Since the NN query retrieves answers according to the proximity of the
objects, a distance metric is required. Two of the most common used distance
metrics are the Euclidean distance (L2), and the Manhattan distance (Li). How
ever, any Lp norm can be applied, as long as the NN processing algorithm takes
into consideration the corresponding distance. Given two multidimensional

25

26 NEAREST NEIGHBOR SEARCH

vectors x and y with n dimensions, tlieir Lp distance is defined as follows:

^ i/p

Lp{x,y) = \y2i\xj-yj\P

wliere tiie coordinates of the j-th dimension for x and y respectively.
Figure 3.1 illustrates examples of 2-NN and 4-NN queries, for a fixed query
object, using the L2 norm (Euclidean). The database objects and the query
object are vectors (points) in the 2-d space.

e
0

0
0 0 0

0 0
©

(a) nearest-neighbor query for k=2

0

(b)

0

0

0

nearest

0

, Q ' J

© ®

0
-neighbor query for fc=4

Figure 3.1. Examples of 2-NN and 4-NN queries using the L2 norm.

The similarity between the range query and the NN query is obvious. How
ever, in a range query we know exactly the maximum possible distance to a
database object, whereas the number of objects that satisfy the answer is not
known in advance. On the other hand, in an NN query, we specify the number
of objects that will be contained in the answer, but the distance to the furthest
object is not known in advance.

Based on the above observation, one could think that a /c-NN query could
be answered by using repetitive range queries. However, the prediction of the
distance is not straightforward. For example, consider the 2-d dataset depicted
in Figure 3.2, where we are asking for the three nearest neighbors of point
P. The target is to determine the three nearest neighbors of P by performing
range queries. However, as it is shown in Figure 3.2, the first three attempts
lead to three range queries with radius di, d^ and d^ respectively. Since no
result is returned, the search distance is increased even more to obtain at least
three objects. However, the circle with center P and radius d^ contain much
more than three objects, leading to significant performance degradation. In
summary, repetitive range queries can lead to either absence of results, or the
return of excessive objects. Both cases should be avoided, by using more
efficient algorithms for fc-NN processing.

Nearest Neighbor Queries 27

o
o o

o
o

o
o

o
o

Figure 3.2. Answering a 3-NN query by using repetitive range queries.

3. Applications
NN queries are successfully applied to numerous application domains in

diverse fields. Perhaps the most intuitive use of NN queries is in Geographical
Information Systems (GIS) where a user may request the five closest cities with
respect to a location on a map, or the three nearest hospitals from a car accident
location. These queries are intuitive because the object location contains a clear
meaning to the user.

In several application domains, database objects are far more complex and
rich in content. For example, an image database may contain several thousands
of color images, and a user may query the database according to some image
characteristics. Consider the query "retrieve all images that are similar to image
Q" or the query "retrieve the five images that have similar colors with image
Q". In the above examples, the user must have a clear meaning of the similarity
between two images. Similarity in image databases can be expressed by means
of color, texture, shape or other image characteristics [83]. Similar queries can
be posed for other multimedia types as well, such as audio and video [68].

In the aforementioned applications, NN queries can be applied to determine
the similarity between database objects. Since complex objects can be trans
formed to multidimensional vectors, NN processing can be performed on the
transformed space and then the original space is used to discard false alarms and
refine the retrieved objects (candidates). An important issue here is the selected
distance metric that will be used to express the similarity or the dissimilarity of
objects. Usually, the L2 or the weighted L2 distance give satisfactory results,
but other metrics could be used according to the physical characteristics of the
objects.

Since NN queries are applied to determine similar objects, they are also
called similarity queries. However, range and join queries can also be applied
for similarity purposes as well. In a similarity range query we give a query

28 NEAREST NEIGHBOR SEARCH

object Q and a distance e and we require all objects that are similar to Q and
the dissimilarity (distance) is less than e. For example, the query: "retrieve
all images that are similar to Q, and their dissimilarity with respect to Q is
less that e" is a similarity range query. The similarity join query is basically
a join query with the characteristic that the predicate used is related to object
similarity between two sets of objects. For example, the query: "retrieve all
pairs of images (x,y) with x E X and y &Y such that the dissimilarity between
X and y is at most e".

As long as the objects can be represented as multidimensional vectors there is
no particular difficulty in NN query processing. However, in some applications,
objects can not be directly mapped to a multidimensional space, and the only
information at hand is the pairwise distance between the objects. For example,
in DNA sequences, the distance between sequence A and sequence B can be
expressed by means of the edit distance, giving the number of modifications
required in one sequence to become identical to the other. In such cases there
are two approaches that can be followed to process NN queries efficiently:

• specialized access methods, such as M-trees [21] and Slim-trees [139,140],
can be constructed to organize the database objects and provide the required
techniques for query processing,

• algorithms, such as FastMap [30], can be applied to map objects to a hy
pothetical multidimensional space, taking into consideration the distances
among the objects. Then, NN queries are easily supported, by using spatial
access methods.

Both techniques have been successfully applied in several application do
mains. The great advantage of the second approach is that after the transfor
mation, multidimensional access methods can be used to organize the objects.
On the other hand, the first approach requires specialized access methods and
query processing is guided by the metric space properties. For any objects Oj
and Oj, if D{Oi, Oj) is their distance, then for a metric space the following
properties hold:

1 D{Oi,Oj) > 0 (positivity)

2 D{Oi, Oj) = D{Oj,Oi) (symmetry)

3 D{Oi, Oj) < D{Oi, Ok) + D{Ok, Oj) (triangular inequality)

In this book we focus on the vector representation of objects and rely on
multidimensional access methods for indexing and retrieval.

4. Nearest Neighbor Queries in R-trees
A very simple method for NN query processing is to search sequentially all

database objects, keeping a list of the k nearest neighbors determined. Ev-

Nearest Neighbor Queries 29

idently, this approach is both VO and CPU intensive, since the number of
database objects is usually very large. Therefore, several algorithms have been
reported in the literature aiming at efficient processing of fc-NN queries, exploit
ing the good properties of index structures to reduce both the number of disk
accesses and the required processing time. During the search process, several
objects are discarded if it is not possible to be part of the final answer.

The first reported algorithm for NN query processing in R-trees has been
proposed in [106], which is a modification of the algorithm reported in [33] for
the /s-d-tree. In order to find the nearest neighbor of a point, the algorithm starts
form the R-tree root and proceeds downwards. The key idea of the algorithm is
that many branches of the tree can be discarded according to some rules. Two
basic distances are defined in n—A space, between a point P with coordinates
(pi,P2, •••,Pn) and a rectangle-R with comers (si, S2,..., s„) and (ti,i2, •••, tn)
(bottom-left and top-right respectively). These distances are defined as follows:

Definition 3.1
The distance MINDIST{P, R) of a point P from a rectangle R, is defined as
follows:

MINDIST{P, R) =

\ i=i
Ti

Sj,

tj,

Vh

Pj < Sj

Pj > tj
otherwise

where:

n
Definition 3.2
The distance MINMAXDIST{P, R) of a point P from a rectangle R, is
defined as follows:

MINMAXDIST{P, R) = / min {\pk - rmkl"^ + V \pj - rMj\'^)
\ l<k<n ^—^
V i<i<n,i/fe

where:

rrrik
Sk,

tk,

^^={?:

P k < ^
otherwise

Pj > ^ ^
otherwise

n
Clearly the MINDIST is the optimistic metric, since it is the minimum

possible distance that the nearest neighbor of the query point P can reside in
the corresponding data page. On the other hand, MINMAXDIST is the

30 NEAREST NEIGHBOR SEARCH

pessimistic metric since it is the furtiiest possible distance where the nearest
neighbor of P can reside in the current data page. Therefore, the latter metric
guarantees that the nearest neighbors of P lies in a distance not greater than
MINMAXDIST. The above definitions are shown graphically in Figure
3.3.

MINDIST

MINMAXDIST

Figure 3.3. MINDIST and MINMAXDIST between a point P and two rectangles Ri and R2.

The three basic rules used for pruning the search in the R-tree during traver
sal follow. Notice that these rules are applied only if one nearest neighbor is
required.

Rulel
If an MBR R has MINDIST{P, R) greater than MINMAXDIST{P, R')
of another MBR R', then it is discarded because it cannot enclose the nearest
neighbor of P.

Rule 2
If an actual distance d from P to a given object is greater than MINMAX-
DIST{P, R) from P to an MBR R, then d is replaced by MINMAX-
DIST{P, R) because R contains at least one object which is closer to P.

Rule 3
If dcur is the current minimum distance, then all MBRs Rj with MINDIST
{P,Rj]
of P.

> dcur ^ e discarded, because they cannot enclose the nearest neighbor

Upon visiting an internal tree node. Rule 1 and Rule 2 are used to discard
irrelevant branches. Then, a branch is selected according to a priority order.
Roussopoulos et al. suggest that when the overlap is small, the MINDIST
order should be used since it would discard more candidates. This is also
verified in the experimental results of their work. Therefore, the branch which
correspond to the minimum MINDIST among all node entries is chosen.

Nearest Neighbor Queries 31

Upon returning from the subtree processing, Rule 3 is applied to discard other
candidates (if there are any). The corresponding algorithm is illustrated in
Figure 3.4.

Algorithm NNSearch(Node, Point, Nearest)
1. ifNode.type==LEAF
2. for i=l to Node.count
3. dist - objectDIST(Point, Node.branch[i].rect)
4. if dist < Nearest.dist
5. Nearest.dist = dist
6. Nearest.rect = Node.branch[i].rect
7. endif
8. endfor
9. else
10. genBranchList(branchList)
11. sortBranchList(branchList)
12. last = pruneBranchList(Node, Point, Nearest, branchList)
13. for i = 1 to last
14. newNode = Node.branch[branchList[i]]
15. NNSearch(newNode, Point, Nearest)
16. last = pruneBranchList(Node, Point, Nearest, branchList)
17. endfor
18. endif
19. end

Figure 3.4. NN search algorithm for R-trees.

NN queries in the R"^-tree have been studied by Belussi et al. [8]. Recall
that in the R"'"-tree no overlap is allowed between nodes in intermediate levels,
resulting in object clipping. Therefore, an object may be split to two or more
parts to respect the above requirement. Their method considers information
on the reference space to improve the search. The resulting data structure
integrates the R+-tree with a regular grid, indexed by using a hashing technique,
combining the advantages of the rectangular space decomposition attained by
R+-trees, with a direct access attained by hashing.

5. Nearest Neighbor Queries in Multimedia Applications
In several applications, a transformation is applied to the original objects to

obtain a more convenient representation. This technique is ubiquitous to apply
efficient indexing schemes for fast query processing, and is applied extensively

32 NEAREST NEIGHBOR SEARCH

in multimedia databases. However, the fundamental R-tree NN query process
ing method presented in the previous section must me adapted accordingly. The
main reason for this modification is the avoidance of false dismissals, which
are objects that satisfy the query constraints but are not retrieved by the search
method. Note that although false alarms are allowed (because they can be elim
inated in the refinement step), false dismissals result in information loss and
therefore they must be avoided.

Let D{0\, O2) be the distance between two objects in the original space, and
d{oi, 02) be the distance of the objects in the transformed space. In order to
guarantee the avoidance of false dismissals, D and d must satisfy the following
inequality as it has been proven in [5]:

d{oi,02)<D{Ou02) (3.1)

We assume that our database is composed of a number of audio files, where
each one has been sampled with the same rate, and all have equal duration. Our
target is, given an audio file, to determine the k audio files that are closer to
the query, with respect to the Euclidean distance. Although there are several
methods proposed to attack this problem, we focus on a simple technique to
illustrate the impact of transformations to the NN search algorithm. Since
the original data are too complex to be handled by an indexing scheme, we
transform each audio file to the frequency domain by applying the Discrete
Fourier Transform (DFT). Then, we keep only the first few DFT coefficients in
order to represent each audio file as a point in a multidimensional space. This
enables the use of R-trees (or any other multidimensional access method) to
index the multidimensional points.

For instance, assume that the audio files are transformed to points in the
2-d space, by the above transformation mechanism. First, we discuss the pro
cessing of range queries and the application of the filter-refinement processing
paradigm. Next, NN queries are discussed. Given a query audio Q and a non-
negative real number e the range query asks for all audio files that lie in at most
e distance from Q. Query processing begins from the R-tree that has been built
on the transformed objects. The query audio Q must be also transformed by
using the same transformation method applied to the data objects. Therefore,
a multidimensional point q is derived from the query audio Q. Using q and
e the R-tree is searched and let oi, 02,..., o„ be the n multidimensional points
that lie inside the circle with radius e centered at q. Because of Equation 3.1,
some of the retrieved objects are false alarms and are not part of the final an
swer Therefore, by examining the original characteristics of the data objects
Oi,...,On false alarms are discarded.

Searching for the k nearest neighbors of a query audio file Q is a bit more
complicated than range search. Again, let q be the transformed query and k the

Nearest Neighbor Queries 33

requested number of nearest neighbors. The basic algorithm is comprised of
the following steps:

1 The R-tree is searched to determine the k objects oi,..., o^ that are the nearest
neighbors of q in the transformed space. Since the retrieved objects may
not be the nearest neighbors of Q in the original space, further processing
is required.

2 Let Om, where 1 < TO < /c, be one of the retrieved multidimensional
points such that Om is the furthest from q among the retrieved candidates.
The distance D{Q, Om) is determined between Q and Om in the original
space. Evid&aily, d{q,Om) < ^(QiOm) because of Equation 3.1. Us
ing D{Q, Om) as the radius, a range query is performed centered at q by
searching the R-tree, and a new set of r candidates is retrieved, where k <r.

3 The final set of objects is determined by inspecting the new set of candidates
and selecting the k amongst them that are closer to the query object.

We see that the /c-NN algorithm contains a step that involves a range query.
This is necessary, since the retrieval of the k nearest neighbors in the transformed
space does not guarantee that all relevant objects have been found. This happens
because the distance between two objects in the transformed space is lower
than their corresponding distance in the original space. Therefore, the nearest
neighbors in the transformed space may not correspond to the real nearest
neighbors of the query object.

ID rank in original space rank in transformed space D{Q,0) d{q,o)

IDl

ID2

ID3

ID4

IDS

ID6

1

5

2

3

4

6

1

2

3

4

5

6

10

50

15

20

30

70

9

12

15

18

20

50

Table 3.1. Distances between a query object and some data objects.

This is illustrated in Table 3.1, where the distance between a query object
and six database objects is depicted for the original and the transformed space.
It is clear that the three nearest neighbors of the query object in the transformed

34 NEAREST NEIGHBOR SEARCH

space are IDl, ID2 and ID3 with distances 9,12 and 15 respectively. However,
the three nearest neighbors in the original space are objects IDl, ID3 and ID4.
If we rely on the nearest neighbors in the transformed space, object ID4 is lost,
and therefore the final result is not correct (we have false dismissals). On the
other hand, if we proceed with steps 2 and 3 described above, then the answers
are retrieved correctly. From the three candidates retrieved, object ID2 gives
the maximum distance in the original space from the query point (i.e. 50). The
range query with radius 50 in the transformed space retrieves the objects IDl,
ID2, ID3, ID4 and ID5. Finally, by inspecting the distances of these objects
from the query object in the original space, we conclude that the final answer
is composed by objects IDl, ID3 and ID4.

6. Summary
k-NN queries are extensively used in spatial, spatiotemporal and multimedia

database systems. Due to their importance, several query processing algorithms
have been developed for various access methods to provide fast retrieval of the
answers.

The difficulty in k-NN query processing is that the distance to the fc-th nearest
object is not known in advance, and therefore an ordinary range query can not
be applied. The first proposed k-NN processing algorithm for the R-tree access
method has been pubhshed in [106].

The algorithm is based on the branch-and-bound technique and on a set of
rules that are used to discard irrelevant tree branches. The algorithm can be
applied to other hierarchical access methods as well, with minor modifications.

In several cases (especially in databases with complex objects), data objects
are transformed to another space to ease the indexing mechanism and therefore
allow for more efficient object retrieval during queries. In order to process k-NN
queries a few modifications are required to the fundamental algorithm, to avoid
false dismissals. The modified algorithm is composed by a) an ordinary k-NN
search in the transformed space, b) a range search, and c) a final refinement step
to discard false alarms.

7. Further Reading
The complete description of the examined fc-NN algorithm for R-trees can

be found in [106], where the authors present the algorithm in detail and provide
performance evaluation results. In [114] a multistep k-NN search is proposed
to provide efficient processing of NN queries in multimedia database systems.

Reverse NN queries determine the set of database objects that have the query
point as the nearest neighbor. The reverse and the nearest neighbor problems
are asymmetric. If the nearest neighbor of a query point P is a data point Q,
then it does not hold in general that P is the nearest neighbor of Q (i.e., P is

Nearest Neighbor Queries 35

not necessarily the reverse nearest neighbor). The aforementioned problem has
been introduced in [56], however it ŵ as restricted to static data and specialized
data structures. Stanoi et al. [125] have developed a reverse NN algorithm for
the R-tree, which can handle dynamic data efficiently. Recently, Tao, Papadias
and Lian have studied the problem for high-dimensional spaces [134].

Hjaltason and Samet [40] presented the problem of incremental NN searching
with an R-tree. An incremental fc-NN query determines the data objects in their
order of distance from the query object {ranking). In this method the variable
k is not necessary to be given in advance, and the user is able to request more
nearest neighbors, avoiding the recomputation costs.

Similarity range queries in the context of image databases are studied in
[83]. In [5, 31] similarity range queries in time-series are investigated, where
the R-tree is used to index time-series data. Query processing techniques and
access methods for similarity join queries are studied in [14, 121]. Efficient
algorithms and performance evaluation for closest-pair query processing can
be found in [22, 23, 24, 25].

Chapter 4

ANALYSIS OF NEAREST NEIGHBOR QUERIES

1. Introduction
An important aspect in database systems is the ability to predict or estimate

the cost of the various operations, before their execution. This information
can be exploited by query optimizers towards efficient query execution plan
(QEP) generation. Complex queries (involving selections and joins from sev
eral database tables) can be executed in many different ways. The determination
of the best query execution plan is not a trivial task, requiring additional knowl
edge regarding the data distribution, the query distribution, the selectivity of an
operator, the index availability, and many more.

Relation B

Relation A

Relation B Relation A

(a) (b)

Figure 4.1. Two equivalent query execution plans.

As an example, consider the two different query execution plans depicted in
Figure 4.1. Both QEPs, retrieve the same answer, although by using different

37

3 8 NEAREST NEIGHBOR SEARCH

operator ordering. The first QEP first performs the join operator and then
selection is applied. The second QEP first performs the selection and then
processes the join. Although both QEPs are equivalent with respect to the
answer, their corresponding execution cost may be considerably different.

In this chapter, we study the estimation of the number of disk accesses for the
R-tree leaf level for 1-NN queries. More specifically, lower and upper bounds
are derived giving the minimum and maximum number of leaf accesses for the
processing of 1-NN queries. In order to achieve this goal, the concept of fractal
dimension is used. The fractal dimension is a very powerful tool that can be
used to describe the data skew of a dataset. It has been successfully applied
for range and join queries [9, 102]. Here, we focus on 1-NN queries and we
assume that the underlying R-tree has been constructed by an effective packing
method to guarantee the good properties of the structure.

The material of this chapter is based on [93] and is organized as follows.
In Section 2 we give the analytical considerations regarding the performance
estimation of 1-NN queries, whereas Section 3 contains experimental results
comparing the real and the estimated number of disk accesses for 1-NN query
processing on R-trees.

2. Analytical Considerations
2.1 Preliminaries

In this section, we derive lower and upper bounds for the performance of
the branch-and-bound algorithm. We are interested in the estimation of the
number of disk accesses to R-tree leaf pages, because in general the upper
levels occupy small space in comparison to the leaf level, and therefore can fit
in main memory. The basic notations are presented in Table 4.1.

Assume that the dataspace is composed of a set of points <S in the 2-d space.
The problem is, given a point P{p\,P2) G S, to find its NN point Q(gi, 52)-
Let dnn be the actual Euclidean distance between the points P and Q. The
following propositions hold:

Proposition 4.1
The minimum number of leaf pages touched is the number of leaf pages inter
sected by the circle Ci with center P and radius d„„.

Proof
The distance dnn is not known in advance. Therefore, even if the nearest neigh
bor of the query point is found, the algorithm does not stop until all candidates
are examined. Asaconsequence, all data pages X^ with M/A/^i3/5T(P,Xi) <
dnn must be searched. •

Analysis of Nearest Neighbor Queries 39

Symbol Description

S

N

n

a

Do

D2

^max

Cavg

u...
(3>rin

dm

g

L{q)

ound

ound

a set of 2-d points

population of the indexed dataset

space dimensionality

side of tlie square-like data page MBR

Hausdorff'fractal dimension

correlation fractal dimension

maximum number of objects per node

average number of objects per node

average space utilization

distance between a query point and its NN point

distance from a query point to the MINMAXDIST vertex
of the first retrieved data page)

query window side

number of leaf accesses for a window query of side q

lower bound for the number of leaf accesses

upper bound for the number of leaf accesses

Table 4.1. Basic notations used throughout the analysis.

Before stating Proposition 4.2, we introduce the following basic assumption
which is a reasonable property of the algorithm, when the tree nodes have no
or very little empty space:

Basic Assumption
The first data page that the algorithm visits, is the data page with the minimum
MINDIST among all data pages. •

Proposition 4.2
The maximum number of leaf pages touched is the number of leaf pages that the
circle C2 with center P and radius dm intersects, where dm is the MINMAX
DIST between P and the first touched leaf page.

40 NEAREST NEIGHBOR SEARCH

Proof
Let R denote the first visited data page MBR. Clearly, the distance MINMAX-
DIST{P, R) is the maximum possible "safe" distance where a nearest neigh
bor can be found in this data page. Moreover, it is possible that all data pages
Xi with HINDIST{P, Xi) < MINMAXDIST{P, R) will be visited, if a
particular visiting sequence occurs. D

nearest neighbor of P

(query point) f

w

MNDIST(PJ)

MNMAXDIST(P,I) •

(b)

Figure 4.2. (a): example of Proposition 4.1, (b): example of Proposition 4.2.

In Figure 4.2(a) an example is illustrated for Proposition 4.1. The arrow
points to the nearest neighbor of the query point P. Even if the algorithm
reaches this point, it is not known that this is the nearest neighbor of P, until
data pages 1 and 2 are examined. In Figure 4.2(b) Proposition 4.2 is explained.
Page 1 is the first visited data page. In the worst case the nearest neighbor of
P , in this page, resides in MINMAXDIST{P, 1) from P. However, it is not
guaranteed that pages 2 and 3 will be visited. This will occur in the worst case
only, and depends on the visiting sequence and the location of the "temporary"
NN point in each data page.

The above propositions give a lower bound (Proposition 4.1) and an upper
bound (Proposition 4.2) for the number of leaf nodes touched by the algo
rithm, on the average. We note the importance of the distance dnn, which is
the expected distance from P to its nearest neighbor. Therefore, if we had an
estimation for dnn, we could provide estimations for the best and worst perfor
mance of NN queries. The following subsection deals with the estimation of
dnn and dm.

2.2 Estimation of dnn and d^
We are interested in the estimation of dnn for arbitrary object distributions.

Real datasets show a clear divergence from the uniformity and independence
assumption [29] and, therefore, it is better to consider uniformity as a special
case. In [9] a formula has been reported that estimates the average number of
neighbors n6(e, shape) of a point P within distance e from P, using the concept

Analysis of Nearest Neighbor Queries 41

of the correlation fractal dimension of the point set:

nb{e, shape) = (^^^l-rneie^hape))^ ^=/" ^ ^^^ . e^^ (4.1)
\ volume[€,rect) J

where N is the dataset population, D2 is the correlation fractal dimension, n
is the dataspace dimensionality (2 in our case), and shape is the shape with its
center of gravity on a point P of the dataset. Since we are interested in NN
queries with respect to the Euclidean distance, it is sufficient to set shape =
circle. Making the appropriate modifications in Equation (1) we get:

/ _ 2 \ £ ' 2 / 2
nb{e, circle) = (7 - 2) • (A^ - 1) • 2^^ . g D2

By simplifying we get:

nb{e, circle) = (^/7f)^2 • {N ~ 1) • e^^ (4.2)

We can use Equation (4.2) to estimate the average distance (dnn) of a point

P to its nearest neighbor. We are searching for an e such that nb{e, circle) = 1.

After substitution in Equation (4.2) and algebraic manipulations we reach:

The above equation holds for an arbitrary dataset, when we allow queries to
land only on data points. The uniformity case is derived by setting D2 = 2.

Let us now try to estimate the distance dm, which is the minimum MIN-
MAXDIST between the query point P and the first visited data page. We
assume that the MBRs of the data pages are squares with side a. The following
proposition holds:

Proposition 4.3
The maximum possible difference between M7A' 'MAXD/5T(P, R) and HIN
DI ST{P, R) from a query point P to an MBR R is a.

Proof
This happens when the query point P coincides with a vertex of the MBR R.
This is demonstrated in Figure 4.3. As we can see, when the query point P
approaches the bottom-right vertex of the MBR, the difference between MIN-
MAXDIST and HINDI ST increases. n

Assuming that the nearest neighbor of a query point lies in the half distance
(on the average) between the difference oi HINDI ST and HINMAXDIST,

42 NEAREST NEIGHBOR SEARCH

MINMAXDIST

MINDIST

Figure 4.3. When the query point P coincides with a vertex of the MBR, then the maximum
difference (a) between MINDIST and MINMAXDIST is obtained.

we need only to augment dnn by cr/2 to reach the MINMAXDIST. There
fore, we conclude that the distance dm which gives the upper bound of Propo
sition 4.2 is calculated by the following equation:

dm = _ _ V + ^ (4.4) a

^- V (^ -1) ^ 2

2.3 Performance Estimation
Let <S be a set of A'' data points distributed in the unit square address space.

We are interested in estimating the number of data pages retrieved, when the
nearest neighbor is requested for any point P e S. Given a query window
qxq, the number of leaf nodes L{q) retrieved is given by a formula reported in
[29], which assumes that queries are distributed uniformly on the address space
i.e. each dataspace portion has the same probability to be requested:

Liq) = J^-(a + qf (4.5)
a avg

where a
l/Do

^avg — ^rr Uavg, N is the dataset population.

Do is the Hausdorjf (box counting) fractal dimension of the underlying point
dataset, Cmax is the maximum node capacity and Uavg is the average space
utilization of the R-tree nodes.

However, in our case we cannot use Equation (4.5). This is due to the fact,
the queries can land only on (existing) data points and therefore at least one
leaf access will occur. In other words, in our case the query model assumes
that the query distribution follows the data distribution (i.e. each data object
has the same probability of retrieval [87]). Therefore, we are going to derive a
formula that obeys the latter query model.

Assume we have a q' x g window and we have to perform a range query Q
over the underlying address space. We know that the average size of each data

Analysis of Nearest Neighbor Queries 43

•
•

q/2
• < > •

•

t
' o

1 a

• i
•

-̂
,q/2 ,
*
•

•

•

^ 1 q/2

•

•

•
•

q/2
<: aJ

•

•

Figure 4.4. Example of an enlarged data page.

page MBR is cr x cr. We are interested in calculating the probability Pfetch
that a data page will be fetched due to the execution of Q. A data page will be
fetched only if the centroid of the window q'x q falls in the area surrounded by
the dashed line of Figure 4.4. Note however, that the query window centroid
can only coincide with an existing data point (according to the query model
considered in this chapter). Therefore, the probability Pfetch can be defined as:

P fetch —
GoodPoints

AllPoints
(4.6)

where GoodPoints is the number of points enclosed by the enlarged {a + q)x
[a- + q) window, and AllPoints is the population, N, of the indexed dataset.
However, we have the appropriate mathematical tools to calculate GoodPoints.
We can use Equation (4.1) setting shape = red and e = ^ ^ . This requires
an optimistic assumption that we can always find a data point on the data page
MBR centroid. Therefore, we have:

GoodPoints = (N-l)-{a + g)^^

From Equations (4.6) and (4.7) we get:

N
fetch —

N
(a + q) D2

(4.7)

(4.8)

Our next step is to calculate the average number of data page accesses. We
know that the total number of data pages is 7 ^ . Therefore:

L{q)
N

C,
•P fetch L{q)

avg

N-1

avg c,
{<^ + q A (4.9)

avg

In order to get the lower and upper bounds for the number of leaf accesses,
we must substitute q in Equation (4.9), with 2 • dnn from Equation (4.3), and

44 NEAREST NEIGHBOR SEARCH

2 • dm from Equation (4.4), respectively. Tlierefore, we have:

•^bound

a
• (a + 2 • dnnf^

avg

Ubound = - 7 ; • (cr + 2 • dm) ^

a

(4.10)

(4.11)
avg

Equations (4.10) and (4.11) include uniformity as a special case. Clearly, for
uniform point sets Do ~ 2 and D2 »* 2, so we can use the above equations
for any kind of point set. Also, we note that Lhound and Ubound are bounds on
the average case and not absolute ones. This means that during NN query pro
cessing, the lower bound may be higher than the leaf pages touched. However,
we are interested on the average case, and exceptional cases do not harm the
generality.

3. Performance Evaluation
3.1 Preliminaries

We implemented the branch-and-bound algorithm [106] and the Hilbert-
packed R-tree [49] in the C programming language under UNIX, and ran the
experiments on a DEC Alpha 3000 workstation. We used randomly generated
as well as real-life points to verify the theoretical aspects. The datasets used are
depicted in Figure 4.5. The real-life points are 9,552 road intersections of the
Montgomery County, Maryland (MG). For uniform point sets we have Do ~ 2
and D2 « 2, whereas for the MG points Do « 1.719 and D2 « 1.518 [9].

•̂ ' : , . ; : ; 'JH

• • , • " '•

%wm:
• ; ; . - , • L ; - : . : . -

' :,-iM':^i4::

. • ' • • ; .

Random points MG points

Figure 4.5. Datasets used in tiie experiments.

Analysis of Nearest Neighbor Queries 45

3.2 Experimental Results
In all experimental series, for each dataset, the average number of leaf ac

cesses was determined by issuing an NN query for each existing data point.
Also, the lower and upper bounds for the average number of leaf accesses were
calculated. The measured average number of leaf accesses is shown in the last
column of each subsequent table.

Experiment 1
The dataset is composed of a number of uniformly distributed points. The
maximum R-tree node capacity was set to 50 objects. In Table 4.2 we present
the results for uniform data of various populations.

Experiment 2
The dataset is composed of uniformly distributed points. Here, we keep the
dataset population constant at 50,000 and vary the maximum tree fanout
from 10 to 200. The results are shown in Table 4.3.

Experiment 3
The dataset is composed of the 9,552 MG points. Again, we vary the tree
fanout from 10 to 200 as in Experiment 2. The results are presented in Table
4.4

From these tables it is evident that the lower and upper bounds enclose very
well the measured average number of leaf accesses. Therefore, one could use
the simple Formulae (4.10) and (4.11) to estimate the performance of an NN
query. We observe that the measured number of leaf accesses is generally closer
to the lower bound than the upper bound. This gives us a strong indication that
the branch-and-bound algorithm with the MINDIST criterion exploits the
"goodness" property of the packed R-tree very effectively. The lower bound
gives an optimistic metric, whereas the upper bound gives a pessimistic met
ric. Both bounds are valuable in query processing and optimization. Another
observation is that when the data (and hence the query) distribution is uniform,
the bounds do not depend on the dataset population. This can be verified by
substituting the appropriate values for a, dnn and dm in Equations (4.10) and
(4.11), and is illustrated in Table 4.2.

4. Summary
The cost estimation of NN queries is not a trivial task. In this chapter we

have studied an approach which is based on the fractal dimensionality of the
dataset. We have focused on point datasets in 2-d space, which are indexed by
a well-formed R-tree structure.

We have shown that the actual distance between a point and its nearest neigh
bor plays a very important role for the performance estimation of NN queries.

46 NEAREST NEIGHBOR SEARCH

Population Lower Upper Measured

1,000

2,000

10,000

20,000

50,000

100,000

200,000

500,000

1.34

1.34

1.34

1.34

1.34

1.34

1.34

1.34

4.66

4.66

4.66

4.66

4.66

4.66

4.66

4.66

1.63

1.58

1.70

1.80

2.04

1.88

2.28

1.97

Table 4.2. Number of leaf accesses vs. data population. Data=Uniform, Fanout=50.

Fanout Lower Upper Measured

5

10

20

50

100

200

2.26

1.84

1.56

1.34

1.23

1.16

6.27

5.55

5.07

4.66

4.46

4.32

3.02

2.68

2.19

2.03

1.90

1.82

Table 4.3. Number of leaf accesses vs. fanout. Data=Uniform, Population=50,000.

Fanoul Lower Upper Measured

5

10

20

50

100

200

3.22

2.70

2.33

1.98

1.77

1.61

7.99

7.01

6.24

5.44

4.94

4.52

4.13

3.06

2.36

2.27

1.89

1.81

Table 4.4. Number of leaf accesses vs. fanout. Data=MG points, Population « 9,000.

Analysis of Nearest Neighbor Queries 47

Experiments based on synthetic and real-life data have shown that the derived
bounds enclose very closely the number of leaf accesses introduced during the
processing of an NN query. In fact, the performance of the branch-and-bound
algorithm is closer to the lower bound, and therefore is very efficient. This
estimation could be exploited by a query optimizer, to derive an efficient query
processing plan.

5. Further Reading
The cost estimation of spatial operators is a very important research field and

many important results have been published. Since most database operations
are I/O intensive, the number of disk accesses gives an idea about the operation
cost. In [9, 29, 87, 135] the authors provide closed-form formulae for the
estimation of the number of R-tree node accesses for range queries. In [12,133]
performance estimation of NN queries in multidimensional spaces is studied in
detail. Spatial join performance estimation is discussed in [15,32,70, 80,102].

Chapter 5

NEAREST NEIGHBOR QUERIES
IN MOVING OBJECTS

1. Introduction
In Chapter 3 we studied NN query processing in stationary datasets (the

object locations remain fixed, or change very rarely). In this chapter we fo
cus on spatiotemporal databases, which is an emerging research field. More
specifically, we assume that data objects are not stationary, but can change their
location in space. NN query processing for moving objects is a challenging re
search area, since traditional query processing techniques are not very efficient
and therefore are not directly applicable.

Spatiotemporal database systems aim at combining the spatial and temporal
characteristics of data. There are many applications that benefit from efficient
processing of spatiotemporal queries such as: mobile communication systems,
traffic control systems (e.g., air-traffic monitoring), geographical information
systems, multimedia applications. The common basis of the above applications
is the requirement to handle both the space and time characteristics of the
underlying data [122, 136, 145]. These applications pose high requirements
concerning the data and the operations that need to be supported, and therefore
new techniques and tools are needed towards increased processing efficiency.

A moving dataset is composed of objects whose positions change with respect
to time (e.g., moving vehicles). Examples of basic queries that could be posed
to such a dataset include:

• range query: given a region (e.g., a rectangle) R that changes position and
size with respect to time, determine the objects that are covered by R from
time point tg to te.

• nearest neighbor query: given a moving point P determine the k nearest
neighbors of P within the time interval [is, ie\-

49

50 NEAREST NEIGHBOR SEARCH

• join query: given two moving datasets S\ and ^2, determine tiie pairs of
objects (si,S2) with s\ e ^i and S2 G ^2 such that si and S2 overlap at
some point in [tg, tg].

• closest-pairs query: given two moving datasets 5i and 52, determine k pairs
of objects (si,S2) with si e ^i and 52 G ̂ 2 such that their pairwise distance
is the smallest amongst all possible pairs for the time interval [tg, te].

Queries that require an answer for a specific time instance (time-slice queries)
are special cases of the above examples, and generally are more easily processed.
Queries that must be evaluated for a time interval [tg, te] are characterized as
continuous [123,131]. In some cases, the query must be evaluated continuously
as time advances. The basic characteristic of continuous queries is that there
is a change in the answer at specific time points, which must be identified to
produce correct results.

Existing methods are either computationally intensive performing repetitive
queries to the database, or are restrictive with respect to the application settings
(i.e., are applied only for static datasets, or are applicable for special cases that
limit the space dimensionality or the requested number of nearest neighbors).
The objective of this chapter is twofold:

• to study efficient algorithms for NN query processing on moving object
datasets,

• to compare the proposed algorithms with existing methods through an exten
sive experimental evaluation, by considering several parameters that affect
query processing performance.

The chapter is based on [103] and is organized as follows. In Sections 2
and 3 we give the appropriate background and related work for completeness.
In Section 4, the proposed approach is studied in detail and the application to
TPR-trees is presented. Finally, in Section 5, a performance evaluation of all
methods is conducted and the results are interpreted.

2. Organizing Moving Objects
The research conducted in access methods and query processing techniques

for moving-object databases are generally categorized in the following areas:

• query processing techniques for past positions of objects, where past posi
tions of moving objects are archived and queried, using multiversion access
methods or specialized access methods for object trajectories [66, 81, 100,
129, 146],

• query processing techniques for present and future positions of objects,
where each moving object is represented as a function of time, giving

Nearest Neighbor Queriesin Moving Objects 51

the ability to determine its future positions according to the current char
acteristics of the object movement (reference position, velocity vector)
[4,44, 47, 53, 54, 60, 77, 110, 144],

We focus on the second category, where it is assumed that the dataset consists
of moving point objects, which are organized by means of a Time-Parameterized
R-tree (TPR-tree) [110]. The TPR-tree is an extension of the well known R*-
tree [7], designed to handle object movement. Objects are organized in such a
way that a set of moving objects is bounded by a moving rectangle to maintain a
hierarchical organization of the underlying dataset. The TPR-tree differs from
the R*-tree in the following key characteristics:

• bounding rectangles in the TPR-tree internal nodes although are conserva
tive, they are not minimum in general,

• the TPR-tree is efficient for a time interval [tQi,H), where H (horizon) is the
time point which suggests a reorganization, due to extensive overlapping of
bounding rectangles.

• all metrics used for insertion, reinsertion and node splitting in the TPR-tree
are based on integrals which calculate overlap, enlargement and margin for
the time interval [io, H),

• TPR-trees answer time-parameterized queries for a given time interval [ts ,te],
or for a specific time instance.

F
t.

;io

(a) example of a moving bounding rectangle (b) mapping the velocity vector to x and y axis

Figure 5.1. Generation of a moving bounding rectangle.

Figure 5.1 depicts how a moving bounding rectangle is generated for a set
of moving objects in 2-d space. Each object is characterized by its reference
position (location) and its velocity vector. If the object movement is not parallel

52 NEAREST NEIGHBOR SEARCH

to the xory axis, the velocity vector is analyzed as it is shown in Figure 5.1(b).
The generated moving bounding rectangle is constructed by calculating the
MBR for the reference time instance f o and by assigning a velocity vector to its
four edges, as it is shown in Figure 5.1(a). Bounding rectangles for the upper
tree levels are generated similarly.

3. Nearest Neighbor Queries
Allowing the query and the objects to move, an NN query takes the following

forms:

• Given a query point reference position P, a query velocity vector Vq, a time
point tx and an integer k, determine the k nearest neighbors of P at tx
(time-slice NN query).

• Given a query point reference position P, a query velocity vector Vq, an
integer k and a time interval [^1,^2), determine the k nearest neighbors of
P according to the query and object movements from ii to t^ (continuous
or time-interval NN query).

The second query type is more difficult to answer, since it requires knowledge
of specific time instances which indicate that there is a change in the answer
set. These time instances are called split points.

Y (meters)

k

1 . , j ^ 1

1

0 1 2 3 4 5 6 7 8 9 10 X(meters)

Figure 5.2. A NN query example in a moving dataset.

Figure 5.2 shows an example database of four moving objects. Assume that
the k=2 nearest neighbors are requested for the time interval [0,5]. Assume also
that the query point is static (black circle). By observing the object movement
with respect to the query, it is evident that for the time interval [0,2) the nearest
neighbors of P are h and a, whereas for the time interval [2,5) the nearest
neighbors are c and d. In the sequel, we briefly describe research results towards
solving NN queries in moving datasets.

Kollios et al. [53] propose a method able to answer NN queries for moving
objects in 1-d space. The method is based on the dual transformation where

Nearest Neighbor Queriesin Moving Objects 53

a line segment in the native space corresponds to a point in the transformed
space, and vice-versa. The method determines the object that comes closer to
the query between [tg, ie] and not the nearest neighbors for every time instance.

Zheng et al. [148] proposed a method for computing a single nearest neighbor
{k = 1) of a moving query, applied to static points indexed by an R-tree. The
method is based on Voronoi diagrams and it seems quite difficult to be extended
for other values of k and higher space dimensions.

In [123] a method is presented to answer such queries on moving-query,
static-objects cases. Objects are indexed by an R-tree, and sampling is used to
query the R-tree at specific points. However, due to the nature of sampling, the
method may return incorrect results if a split point is missed. A low sampling
rate yields more efficient performance, but increases the probability of incor
rect results, whereas a high sampling rate poses unnecessary computational
overhead, but decreases the probability of incorrect results.

Benetis et al. [10] propose an algorithm capable of answering NN queries
and reverse NN queries in moving-object datasets. The proposed method is
restricted in answering only one nearest neighbor per query.

In [131] the authors propose an NN query processing algorithm for moving-
query moving-objects, based on the concept of time-parameterized queries.
Each query result is composed of the following components: i) R is the current
query result set, ii) T is the time point in which the result becomes invalid, and
iii) C is the set of objects that influence the result at time T. Therefore, by
continuously calculating the next set of objects that will influence the result, we
determine the nearest neighbors of the query from ii to i2- A TPR-tree index
is used to organize the moving objects.

The main drawback of the aforementioned method is that the TPR-tree is
searched several times in order to determine the next object that influences the
current result. This implies additional overhead in CPU and I/O time, which is
more severe as the number of requested nearest neighbors increases. In [130]
the same authors present a method which is applicable for static datasets to
overcome the problems of repetitive NN queries. By assuming that the dataset
is indexed by an R-tree structure, a single query is performed and therefore each
participating tree node is accessed only once. Performance results demonstrate
that NN queries are answered much more efficiently concerning query response
time. However, the proposed techniques can only be applied for static datasets.

Table 5.1 presents a categorization of NN queries with respect to the charac
teristics of queries and datasets. There are four different problem versions that
are formulated by considering queries and datasets as static or moving. The
table also summarizes the previously mentioned related work for each problem.

In the sequel, we study an efficient algorithm for NN query processing for
moving-query moving-object databases, with the following characteristics:

• the method is applied for any number of requested nearest neighbors.

54 NEAREST NEIGHBOR SEARCH

Query Data Related Work

Static

Static

Moving

Moving

Static

Moving

Static

Moving

conventional tecliniques

special case of moving-query moving-data

Roussopoulos et al [123]
Zheng etal. [148]
Taoetal. [130]

Taoetal. [131]
KoUios et at. [53]
Benetisetal. [10]

Table 5.1. NN queries for different query and data characteristics.

• the metliod can be applied for any number of space dimensions, since only
relative distances are computed during query processing,

• different tree pruning algorithms may be applied during tree traversal,

• each tree node is accessed only once, therefore the consumption of system
resources is reduced,

• the method not only reports the time instances when there is a change in the
result, but also the time instances when there is a change in the order of the
nearest neighbors in the current result.

The challenge is to determine the k nearest neighbors of a given moving
query point P, a query velocity vector vp and a time interval [tg, ie]- We want
to answer such a query, by performing only one search, thus avoiding posing
repetitive queries to the database. The answer to the query is a set of mutually
exclusive time intervals, and a sorted list of object IDs for each time interval,
which are the k nearest neighbors of P for the respective time interval.

By assuming that the distance between two points is determined by the dis
tance measure, the distance Dp^Q (t) between query P and object Q as a function
of time is given by the following equation:

Dp,Q{t) = y/ci-f^ + C2-t + C3 (5.1)

where cj, C2, C3 are constants given by:

c\ = {vqx - vpxf + {vqy - vpyf

Nearest Neighbor Queriesin Moving Objects 55

C2 = 2 • [{Qx - Px) • {vqx - vpx) + {Qy - Py) • {vqy - vpy)]

C3 = (Qx - Px? + {Qy - Py?

vQx, vqy are the velocities of object Q, vpx, vpy are tlie query point velocities
in each dimension, whereas {Qx, Qy), {Px, Py) are the reference positions of
the object Q and the query P respectively. In the sequel, we assume that the
distance is given by {Dp^Q{t))^ to perform simpler calculations.

The movement of an object with respect to the query is visualized by plotting
the function {Dp^Q{t))'^, as illustrated in Figure 5.3. For NN query processing
the distance from the query point contains all the necessary information, since
the exact object position is irrelevant. Note that since ci > 0 the plot of the
function always has the shape of a "valley'.

I I < I I

0 1 2 3 4 5 6 7 8 9 10 t

Figure 5.3. Visualization of the distance between a moving object and a moving query.

D"D

te t

Figure 5.4. Relative distance of objects with respect to a moving query.

Assume that we have a set of moving objects Q and a moving query point P.
The objects and the query are represented as points in a multidimensional space.

56 NEAREST NEIGHBOR SEARCH

Although the proposed method can be appUed to any number of dimensions,
the presentation is restricted to 2-d space for clarity and convenience. Moving
queries and objects are characterized by their reference positions and velocity
vectors. Therefore, we have all the necessary information to define the distance
(Dp_Q (i))^ for every object g G Q. By visualizing the relative object movement
during [t^, tg] a graphical representation is derived, such as the one depicted in
Figure 5.4.

By inspecting Figure 5.4 we obtain the A; nearest neighbors of the moving
query during the time interval [tg, ig] • For example, for fc = 2 the nearest neigh
bors of P for the time interval are contained in the shaded area of Figure 5.4.
The nearest neighbors of P for various values of k along with the corresponding
time intervals are depicted in Figure 5.5. The pair of objects above each time
point tx declare the objects that have an intersection at t^. These time points
where a modification of the result is performed, are called split points. Note
that not all intersection points are split points. For example, the intersection
of objects a and c in Figure 5.4 is not considered as a split point for A; = 2,
whereas it is a split point for A; = 3.

aRb aRd bfld bflc

.<.a-».< b >.< b > - < — d — • • d . * .
b a d b e

cRd aflb aRd aflc bRd bflc

'' ' ' ' ^ . '^ . '^ . ' = . ' « . '<•

a a b b b d d
*b-«-^b—•"< a •-• d ^ d - » ^ b - ^ * c *

c d d a c c b

Figure 5.5. Nearest neighbors of the moving query for A; = 2 (top) and fc = 3 (bottom).

The previous example demonstrates that the k nearest neighbors of a moving
query can be determined by using the functions that represent the distance of
each moving object with respect to the moving query. Based on the previous
discussion, the next section presents the design of an algorithm for NN query
processing (NNS) which operates on moving objects.

3.1 The NNS Algorithm
The NNS algorithm consists of two parts, which are described separately:

• NNS-a algorithm: given a set of moving objects, a moving query and a time
interval, the algorithm returns the k nearest neighbors for the given interval,
and

Nearest Neighbor Queriesin Moving Objects 57

• NNS-b algorithm: given the k nearest neighbors, the corresponding time
intervals, and a new moving object, the algorithm computes the new result.

3.1.1 Algorithm NNS-a

We are given a moving query point P, a set Qof N moving objects, a time
interval [ig,te], whereas the k nearest neighbors of P are requested. The target
is to partition the time interval into one or more sub-intervals, in which the list
of nearest neighbors remains unchanged. Each time sub-interval is defined by
two time split points, declaring the beginning and the sub-interval end. During
the calculation, the set Q is partitioned into three sub-sets:

• the set /C, which always contains k objects that are currently the nearest
neighbors of P,

• the set C, which contains objects that are possible candidates for subsequent
time points, and

• the set TZ, which contains rejected objects whose contribution to the answer
is impossible for the given time interval [tg, te].

Initially,)C = 0, C = O, and 7?. = 0. The first step is to determine the k
nearest neighbors for time point tg. By inspecting Figure 5.4 for fc = 2 we get
that these objects are a and b. Therefore, /C = {a, b}, C = {c, d, e} and 7?. = 0.
Next, for each o e /C the intersections with objects in IC + C are determined.
If there exist any objects in C that do not intersect any objects in /C, they are
removed from C and are put in TZ, meaning that they will not be considered
again (Proposition 5.1). In our example, object e is removed from C and we
have K. — {a,b},C — {c,d} and 7^ = {e}. The currently determined inter
sections are kept in an ordered list, in increasing time order. Each intersection
is represented as {t^, {u, v}), where t^ is the time point of the intersection and
{u, v} are the objects that intersect at tx.

Proposition 5.1
Moving objects that do not intersect the k nearest neighbors of the query at time
tg, can be rejected.

Proof
An intersection between oi and 02 denotes a change in the result. Therefore, if
none of the k nearest neighbors intersect any other object between [ts, 4] , there
will be no change in the result. This means that we do not have to consider
other objects for determining the nearest neighbors. •

Each intersection is defined by two objects u and v. If three or more ob
jects intersect at the same point t^ the conflict is resolved by evaluating the

5 8 NEAREST NEIGHBOR SEARCH

first derivative for each object at t^ and talcing the minimum value. The cur
rently determined intersection points comprise the current list of time split
points. According to the example, the split point Ust has as follows: (ii, {a, b}),
(i2, {a, d}), {tx, {a, c}), (ts, {b, d}), {t^, {b, c}). For each intersection we dis
tinguish between two cases:

m u E)C and v G K.

m u £ K. and v £ C (OT u G C and v E K.)

In the first case, the current set of nearest neighbors does not change. However,
the order of the currently determined objects changes, since two objects in /C
intersect, and therefore they exchange their position in the ordered list of nearest
neighbors. Therefore, objects u and v exchange their position. In the second
case, object v is inserted into K. and therefore the list of nearest neighbors must
be updated accordingly (Proposition 5.2).

Proposition 5.2
Let us consider a split point at time tx, at which objects oi and 02 intersect. If
oi G /C and 02 G C then at t^, oi is the A;-th nearest neighbor of the query.

Proof
Assume that 01 is not the k-th nearest neighbor at the intersection time. How
ever, oi belongs to the result (is among the k nearest neighbors) at time tx-
The intersection at time tx denotes that objects 01 and 02 are consecutive in
the result. This implies that 02 is already contained in the current result (set
JC) which contradicts our assumption that 02 is not contained in the result set.
Therefore, object 01 must be the A;-th nearest neighbor of the query. •

According to the currently determined split points, the first split point is ti,
where objects a and b intersect. Since both objects are contained in /C, no new
objects are inserted into /C, and simply objects a and b exchange their position.
Up to this point concerning the sub-interval [ts, h) the nearest neighbors of P
are a and b. We are ready now to check the next split point, t2, where objects
a and d intersect. Since a £ /C and d e C object a is removed from /C and
inserted into C. On the other hand, object d is removed from C and inserted
into /C taking the position of a. Up to this point, another part of the answer has
been determined, since in the sub-interval [ti,i2) the nearest neighbors of P
are b and a. Moving to the next intersection, t^, we see that this intersection is
caused by objects a and c. However, neither of these objects is contained in /C.
Therefore, we ignore tx and remove it from the list of time split points. Since a
new object d has been inserted into /C, we check for new intersections between
d and objects in /C and C. No new intersections are discovered, and therefore
we move to the next split point ^3. Currently, for the time sub-interval [̂ 2, ^3)

Nearest Neighbor Queriesin Moving Objects 59

the nearest neighbors of P are & and d. At is objects h and d intersect, and this
causes a position exchange. We move to the next split point t^ where objects
h and c intersect. Therefore, object h is removed from K, and inserted into C,
whereas object c is removed from C and inserted into /C. Since c does not have
any other intersections with objects in K and C, the algorithm terminates. The
final result is depicted in Figure 5.5, along with the corresponding result for
/c = 3. The method outline is illustrated in Figure 5.6.

Algorithm NNS-a
Input: a set of moving objects O, a moving query point P,
time interval [ts, te]. the number k of requested >JNs
Output: a list of elements of the form ([ti, t2]iOi,02i •••,Ofc)
where oi,..., ô , are the NNs of P from ti to t2 (CNN-list),
split-list containing the split points
Local: fc-list containing the current NNs
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

initialize A: = 0, C = C>, and 7^ = 0
initialize split-list with split points ts and te
find the k NNs of P at time point ts
update fe-list
foreach ti 6 /C do

find intersections with -y G /C
find intersections with D € C
update split Ust
move irrelevant objects from C to 71

endfor
while more split-points are available do

check next time split point t̂ , (intersection)
i f («e IQsmAiv 6 K) then

update CNN-list
exchange positions in fc-list

endif
if (u 6 K.) and (v € C) then

move u from KtoC
move V from CtolC
update fc-list
update CNN-list
if (v participates for the first time in fc-Ust) then

determine intersections oiv with objects in C
update split-list

endif
endif
if (u 6 C) and (v 6 C) then

ignore spUt point t i
endif

endwhile
return CNN-list, split-list

Figure 5.6. The NNS-a algorithm.

Each object o G /C is responsible for a number of potential time split points,
which are defined by the intersections of o and the objects contained in C.

60 NEAREST NEIGHBOR SEARCH

Therefore, each time an object is inserted into /C intersection checks must be
performed with the objects in C. In order to reduce the number of intersection
tests, if an object was previously inserted into /C and now it is reinserted, it is not
necessary to recompute the intersections. Moreover, according to Proposition
5.3, intersections at time points prior to the currently examined split point can
be safely ignored.

Proposition 5.3
If there is a split point at time t^, where o\ E K. and 02 G C intersect, all
intersections of 02 with the other objects in /C that occur at a time before tx are
not considered as split points.

Proof
This is evident, since the nearest neighbors of the query object up to time tx have
been already determined and therefore the intersections at time points prior to
tx do not denote a change in the result. D

Evidently, to determine if two objects u and v intersect at some time point
between tg and te, we have to solve an equation. Let the square of the distance
between P and the objects be described by the functions

Du,q{tf =Ui-t^ + U2-t + Uz

and

Dv,q{tf =Vl-t^+V2-t + Vi

respectively. In order for the two object to have an intersection in [ts, te] there
must be at least one value tx, where ts <tx < te such that:

(Ul - Vi) • tl + (M2 - W2) • tx + (M3 -V3) = 0

From elementary calculus it is known that this equation can be satisfied by none,
one, or two values of tx. If

(M2 - •^2)^ - 4 • (MI - vi) • (M3 -V3) <0

then there is no intersection between u and v. If

(U2 - V2)'^ - 4 • (wi - Vl) • (M3 - WS) = 0

then the two objects intersect at

t = - (M 2 - '̂ 2̂)
2 • (wi - Vl)

Nearest Neighbor Queriesin Moving Objects 61

Otherwise the objects intersect at two points t^ and ty given by:

^T,

ty

-(U2 - V2) + \/{u2 - V2Y - 4 • (MI - Vi) • (M3 - Vj)

2- (MI -VX)

-(M2 - V2) — \/{u2 - V2Y - 4 • (MI - t;i) • (M3 - M3)

2 - (MI - u i)

3.1.2 Algorithm NNS-b

After the execution of NNS-a, the CNN-list is formulated, which contains
elements of the form ([^1,^2]! 01,02,..., o/.), where oi,..., o/. are the nearest
neighbors of P from ii to t2, in increasing distance order. Let <S be the set
containing the nearest neighbors of P at any given time between t^ and tg.
Clearly, k < \S\ < \0\. Assume now that we have to consider another object
w, which was not known during the execution of NNS-a. We distinguish among
the following cases, which describe the relation of w to the current answer:

case 1: w does not intersect any of the objects in <S between tg and te, and
lies "above" the area of relevance. In this case, w is ignored, since it can
not contribute to the nearest neighbors. The number of split points remains
the same.

case 2: w does not intersect any of the objects in <S between tg and t^, and
lies completely "inside" the area of relevance. In this case w must be taken
into account, since it affects the answer from tg to t^ (Proposition 5.4). The
number of split points may be reduced.

case 3: w intersects at least one object u e <S at time tg <tx <te, but at time
tx V is not contained in the set of nearest neighbors. In this case, again w is
ignored, since this intersection can not be considered as a split point because
the answer is not affected. Therefore, no new split points are generated.

case 4: w intersects at least one object u G <S at time tg <tx <te, and object
V is contained in the set of nearest neighbors at time t^. In this case w must
be considered because at least one new split point is generated. We note,
however, that some of the old split points may be discarded.

Proposition 5.4
Assume that a new object w does not intersect any of the nearest neighbors
from ts to tg. If at time tg its position among the k nearest neighbors is pos^,
then it maintains this position throughout the query duration.

Proof
Assume that there is a change in the result at some point t^, where object w

62 NEAREST NEIGHBOR SEARCH

changes its position among the nearest neighbors. This implies that there is
an intersection at time t^, since only an intersection denotes a result change.
This contradicts our assumption that there are no intersections of w with other
objects in the result. D

D*D
e
g
d

c

h
b

a
f

k

-y

I "^ /
\ N. /

\ ^ > ^ ~ • ^ / ^ /

^ V. ^ 7

^^^''^^^^
.— 1

1

i

e
a

b

g
c

d
h
f
->

ts t1 t2 t3 t4 te t

Figure 5.7. The four different cases that show the relation of a new object to the current nearest
neighbors.

The aforementioned cases are depicted in Figure 5.7. Object e corresponds
to case 1, since it is above the area of interest. Object / corresponds to case
2, because it is completely covered by the relevant area. Object g although
intersects some objects, the time of these intersections are irrelevant to the
answer, and therefore the situation corresponds to case 3. Finally, object h
intersects a number of objects at time points that are critical to the answer and
therefore corresponds to case 4.

The outline of the NNS-b algorithm is presented in Figure 5.8. Note that
in lines 14 and 20 a call to the procedure modify-CNN-list is performed. This
procedure, takes into consideration the CNN-list and the new split-list that is
generated. It scans the split-list in increasing time order and performs the
necessary modifications to the CNN-list and the split-list. Some split-points
may be discarded during the process. The procedure steps are illustrated in
Figure 5.9.

3.2 Query Processing with TPR-trees
Having described in detail the query processing algorithms in the previous

section we are ready now to elaborate in the way these methods are combined
with the TPR-tree. Let T be a TPR-tree which is built to index the underlying
data. Starting from the root node of T the tree is searched in a depth-first-search
manner (DFS). However, the proposed methods can also be combined with a
breadth-first-search based algorithm. The first phase of the algorithm is com-

Nearest Neighbor Queriesin Moving Objects 63

Algorithm NNS-b
Input: a list of elements of the form ([*i, t2] ,o i , 02, ...,o^;)
where 01, ...,ojc are the NNs of P from t i tot2 (CNNlist),
a new object w, the split-list
Output: an updated list of the form ([<i, t2] ,o i ,02 , ...,0;,)
where 01, ...,Ofc arethe>fNs of Pfrom t i to t2 (CNNlist)
Local: k-]ist current list of NNs,
split-list, the current list of split points
1. initialize S = union of NNs from ts to te
2. intersectionFlag = FALSE
3. foreach s e S do
4. check intersection between s and w
5. if (s and w intersect) then // handle cases 3 and 4
6. intersectionFlag = TRUE
7. collect all tj, s II tj is where w and s intersect
8. if (at tj object s contributes to the NNs) then
9. update split-list
10. endif
11. endif
12. endfor
13. if (intersectionFlag == TRUE) then
14. call modify-CNN-list
15. else // handle cases 1 and 2

-^q^wy 16.
17. i f (D , , „ (t ,) 2 > D ^ j v j v) t h e n
18. ignore lu
19. else
20. call modify-CNN-list
21. endif
22. endif
23. return CNN-list, split-list

Figure 5.8. The NNS-b algorithm.

pleted when m > k objects have been collected from the dataset. Tree branches
are selected to descent according to the MINDIST metric [106] (Definition
1) between the moving query and bounding rectangles at time t^. These m
moving objects are used as input to the NNS-a algorithm to determine the result
from tg to te. Therefore, up to now we have a first version of the split-list and
the CNN-list. However, other relevant objects may reside in leaf nodes of T
that are not yet examined.

Definition 5.1
Given a point p at (pi, P2 ,-••!?«) and a rectangle r whose lower-left and upper-
right corners are (si, S2,..., s„) and(ti, ^2, ...,i„), the distance M/A''D/S'T(p, r)

64 NEAREST NEIGHBOR SEARCH

Procedure modify-CNN-list
Input: a list of elements ([ii, *2]) 01,02, •••,Ofc)
where 01,..., oj. are the NNs of P from ti to ±2 (CNN list),
a new object w, the split-list
Output: an updated list of elements ([<i, t2],oi, 02, ...jOit)
where oj , . . . , ojt are the NNs of P from ti to t2 (CNN list)
Local: fc-list current list of NNs
1. calculate D,,™ (t)^ at time point ts
2. consult CNN-list and update the current fc-list
3. while more split-points are available do
4. check next split-point (tx, {«, v})
5. update CNN-list
6. if (« ^ fc — list) and (i) ^ fc — iist) then
7. remove split-point (ia;, {u, v})
8. elseif (« 6 fc — list) and (D ^ fc — iist) then
9. remove u from fc-list
10. insert v in fc-list
11. update fc-list
12. elseif (ii 6 fc — /ist) and {u ^ k — list) then
13. remove D from fc-list
14. insert u in fc-list
15. update fc-Hst
16. else
17. exchange positions between u and n
18. update fc-Ust
19. endif
20. endwhile

Figure 5.9. The modify-CNN-list procedure,

is defined as follows:

MINDIST(j>, r) = 12

where:

Pj, otherwise

D

In the second phase of the algorithm, the DFS continues searching the tree,
by selecting possibly relevant tree branches and discarding non-relevant ones.
Every time a possibly relevant moving object is reached, algorithm NNS-b is
called to update the split-list and the CNN-list of the result. The algorithm
terminates when there are no relevant branches to examine.

Nearest Neighbor Queriesin Moving Objects 65

D*Df
e

d

c

b

a
^ - ^ . , ^ ^ ^ - ' • • ' ' ' ' ^ 1 ^ ~ ~ I 5 T ' ~

^Tr\
ts t1 t2 t3

(a) one bounding rectangle

-^1

yf
!
I

D'Df
e e
a

d

b c

c b

d
a

---"y -̂̂ i ^1
t4 te t ts t1 12 t3

(b) many bounding rectangles

e
a

b

c

d

t4 te t

Figure 5.10. Praning techniques.

In order to complete the algorithm description, the terms possibly relevant
tree branches and possibly relevant moving objects must be clarified. In other
words, the praning strategy must be described in detail. Figure 5.10 illustrates
two possible praning techniques that can be used to determine relevant and
non-relevant tree branches and moving objects:

Pruning Technique 1 (PTl): According to this technique we keep track of
the maximum distance MAXDIST between the query and the current set
of nearest neighbors. In Figure 5.10(a) this distance is defined between
the query and object h at time tstart- We formulate a moving bounding
rectangle R centered at P with extends MAXDIST in each dimension
and moving with the same velocity vector as P. If R intersects a bounding
rectangle E in an internal node, the corresponding tree branch may contain
objects that contribute to the answer and therefore must be examined further.
Otherwise, it can be safely rejected since it is impossible to contain relevant
objects. In the same manner, if a moving object o^ found in a leaf node
intersects R it may contribute to the answer, otherwise it is rejected.

Pruning Technique 2 (PT2): This technique differs from the previous one
with respect to the granularity level, where moving bounding rectangles are
formulated. Instead of using only one bounding rectangle, a set of bound
ing rectangles is defined according to the currently determined split points.
Note that it is not necessary to consider all split points, but only these that
are defined by the A;-th nearest neighbor in each time interval. An example
set of moving bounding rectangles is illustrated in Figure 5.10(b). Each
internal bounding rectangle and moving object is checked for intersection
against the whole set of moving bounding rectangles and it is considered
relevant only if it intersects at least one of them.

66 NEAREST NEIGHBOR SEARCH

Other pruning techniques can also be determined by grouping split points
to keep the balance between the number of generated bounding rectangles and
the existing empty space. Several pruning techniques can be combined in a
single search by selecting the preferred technique according to some criteria
(e.g., current number of split-points, existing empty space).

It is anticipated that PTl will be more efficient with respect to CPU time,
but less efficient concerning I/O time, because the empty space will cause
unnecessary disk accesses. On the other hand, PT2 seems to incur more CPU
overhead due to the increased number of intersection computations, but also
less I/O time owing to the detailed pruning performed. Based on the above
discussion, we define the NNS-CON algorithm which operates on TPR-trees
and can be used with either of the two pruning techniques. The algorithm
outline is illustrated in In Figure 5.11.

Algorithm NNS-CON
Input: the TPR-tree root,

a moving query P,
the number k of NNs

Output: the fc NNs in [is, t<j]
Local: a set O of collected objects,

Flag is FALSE if NNS-a has not yet been called
number col of collected objects
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12,
13.
14.
15.
16.
17.

if (node is LEAF) then
if (\0\ < k) then

add each entry of node to O
update \0\

endif
if (\0\ > k) and (Flag == FALSE) then

caU NNS-a
set Flag=TRUE

elseif (|C>| > k) and (Flag == TRUE) then
apply pruning technique
for each entry of node call NNS-b

endif
elseif (node is INTERNAL) then

apply pruning technique
sort entries of node wrt MINDIST at ts
call NNS-CON recursively

endif

Figure 5.11. The NNS-CON algorithm.

4. Performance Evaluation
4.1 Preliminaries

In the sequel, a description of the performance evaluation procedure is given,
aiming at providing a comparison study among the different processing meth-

Nearest Neighbor Queriesin Moving Objects 67

ods. The methods under consideration are: i) the AW5'-COA/̂ algorithm enabled
by Pruning Technique 1 described in the previous section, and ii) the NNS-REP
algorithm which operates by posing repetitive NN queries to the TPR-tree [130].
Both algorithms as well as the TPR-tree access method have been implemented
in the C programming language.

Parameter Value

database size, A''

space dimensions, d

data distribution, D

number of NNs, k

travel time, Uravei

LRU buffer size, B

lOK, 50K, lOOK, IM

1,2,3

uniform, gaussian

1-100

26 -1048 sec.

0.1% - 20% of tree pages

Table 5.2. Parameters and corresponding values.

There are several parameters that contribute to the method performance.
These parameters, along with their respective values assigned during the exper
imentation are summarized in Table 5.2.

The datasets used for the experimentation are synthetically generated using
the uniform or the gauss distribution. The dataspace extends are 1,000,000 x
1,000,000 meters and the velocity vectors of the moving objects are uniformly
generated, with speed values between 0 and 30 m/sec. Based on these objects,
a TPR-tree is constructed. The TPR-tree page size is fixed at 2Kbytes.

The query workload is composed of 500 uniformly distributed queries having
the same characteristics (length, velocity). The comparison study is performed
by using several performance metrics, such as: i) the number of disk accesses,
ii) the CPU-time, iii) the FO time and iv) the total running time. In order to
accurately estimate the I/O time for each method a disk model is used to model
the disk, instead of assigning a constant value for each disk access [108]. Since
the usage of a buffer plays a very important role for the query performance we
assume the existence of an LRU buffer with size varying between 0.1% and
20% of the database size.

The results presented here correspond to uniformly distributed datasets. Re
sults performed for gaussian distributions of data and queries demonstrated
similar performance and therefore are omitted. The main difference between
the two distributions is that in the case of the gaussian distribution, the algo-

68 NEAREST NEIGHBOR SEARCH

rithms require more resources since the data density increases and therefore
more split-points and distance computations are needed to evaluate the queries.

4.2 Experimental Results
Several experimental series have been conducted to test the performance of

the different methods. The experimental series are summarized in Table 5.3.

Experiment Varying Parameter Fixed Parameters

EXPl NNs,/c
N = 1M,
B = 10%,
ttravsl = 1 1 0 s e c .

d = 2, £'=uniform

EXP2 buffer size, B
N = 1M,
k = 5,
ttravsl = 1 1 0 s e c .

d = 2, £'=uniform

EXP3 travel time, ttravei
N = 1M,
fc = 5,
B = 10%,
d = 2, r'=uniform

EXP4
space dimensions, d
NNs, fc

N = IM,
B = 10%,

ttr ave

i = 110 sec.
i3=uniform

EXP5
database size, A''
NNs, fc

B = 500 pages,
d=2,
i5=uniform,
ttravei = 1 1 0 SCC.

Table 5.3. Experiments conducted.

The purpose of the first experiment (EXPl) is to investigate the behavior of
the methods for various values of the requested nearest neighbors. The corre
sponding results are depicted in Figure 5.12. By increasing k, more split points
are introduced for the NNS-CON method, whereas more influence calculations
are needed by the NNS-REP method. It is evident that NNS-CON outperforms
significantly the NNS-REP method. Although both methods are highly affected
by k, the performance of NNS-REP degrades more rapidly. As Figure 5.12(a)
illustrates, NNS-REP requires a large number of node accesses. However, since
there is a high locality in the page references performed by a query, the page

Nearest Neighbor Queriesin Moving Objects 69

faults are limited. As a result, the performance difference occurs due to the
increased CPU cost required by NNS-REP (Figure 5.13). Another interest
ing observation derived from Figure 5.13 is that the CPU cost becomes more
significant than the I/O cost by increasing the number of nearest neighbors.

10000

NNS-CON
NNS-REP

• • '

::;::
,..'--

....-

i
- • -

Number ol NNs (k)

(a) Tree node accesses

Number ol NNs (k)

(b) CPU cost (sec)

NNS-CON
NNS-REP

1 ^

[

i

...."

„ „ _ , i r f ' " "

NunibBtofNN8{k)

(c) Total cost (sec)

Figure 5.12. Results for different values of the number of nearest neighbors.

NNS-CON
NNS-REP

;

cf

«--

: l :

P"

-.*—-i

i

' 1

_ -

...-E>--'

\ __ 1

— J

i
0 2 4 6 e 10 12 14 16 18 20

Number of NNs

Figure 5.13. CPU cost over I/O cost.

The next experiment (EXP2) illustrates the impact of the buffer capacity
(Figure 5.14). Evidently, the more buffer space is available the less disk accesses

70 NEAREST NEIGHBOR SEARCH

are required by both methods. It is interesting that although the number of
node accesses required by NNS-REP is very large, (see Figure 5.12(a)) the
buffer manages to reduce the number of disk accesses significantly due to buffer
hits. However, even if the buffer capacity is limited, NNS-CON demonstrates
excellent performance.

..' !

" - - \
r • • « • -

- •a

0.0625 0.125 0.25 0.5 1 2 4 8 16 32
Butter size (paresnlage of db size)

Figure 5.14. Results for different buffer capacities.

Experiment EXP3 demonstrates the impact of the travel time on the perfor
mance of the methods. The corresponding results are depicted in Figure 5.15.
Small travel times are favorable for both methods, because less CPU and I/O op
erations are required. On the other hand, large travel times increase the number
of split-points and the number of distance computations, since the probability
that there is a change in the result increases. However, NNS-CON performs
much better for large travel times in contrast to NNS-REP whose performance
is affected significantly.

The next experiment (EXP4) demonstrates the impact of the space dimen
sionality. The increase in the dimensionality has the following results: i) the
database size increases due to smaller tree fanout, ii) the TPR-tree quality de
grades due to overlap increase in bounding rectangles of internal nodes, and iii)
the CPU cost increases because more computations are required for distance
calculations. Both methods are affected by the dimensionality increase. How
ever, by observing the relative performance of the methods (NNS-REP over
NNS-CON) in 2-d and 3-d space illustrated in Figure 5.16, it is realized that
NNS-REP is affected more significantly by the number of space dimensions.

Finally, Figure 5.17 depicts the impact of database size (EXP5). In this
experiment, the buffer capacity is fixed at 500 pages, and the number of moving
objects is set between 10,000 and 100,000. The number of requested nearest
neighbors is varying between 1 and 15, whereas the travel time is fixed at 110
sec. By increasing the number of moving objects, more tree nodes are generated
and, therefore, more time is needed to search the TPR-tree. Moreover, by
keeping the buffer capacity constant, the buffer hit ratio decreases, producing

Nearest Neighbor Queriesin Moving Objects 71

NNS-CdN -•••--
NNS-REP -G—

• " : • • • •

-

.....--4

: : -

NNS-CON *- • '
NNS-REP - a -

i :

|i^,.^^*•^KB,.,.H.--•.- «»4. ^:----W'

1

..-..--

;
32 64 128 356 512 1024

Travel time (sec)
16 32 64 12B 256 512

Travel time (sec)

(a) Tree node accesses (b) CPU cost (sec)

i j
NNS-CON - > i - -
NNS-REP - Q -

' - ...^--s::_ ' • •

..a

..or-

1 .1

•••• 1

16 32 64 126 256 512 1024 2048

Travel dme (sec)

(c) Total cost (sec)

Figure 5.15. Results for different values of the travel time.

!
20 space

- "" r

, , i 1 - " ' j

•

, r

1

I

!___

1

_ . . . j

2 3 4 5 6 7 8 9 10
Number of NNs(kJ

Figure 5.16. Results for different space dimensions.

more page faults. As Figure 5.17 illustrates, the performance ratio {NNS-REP
over NNS-CON) increases with the database size.

5. Summary
Applications that rely on the combination of spatial and temporal object

characteristics demand new types of queries and efficient query processing

72 NEAREST NEIGHBOR SEARCH

I
E
8 •g ,
S. 10
S

a:

1
10,000
50,000

I00,0{){)

/
» - - • '

:i ; •

,r ' '

- - j ^ - "

1 1

u
t

..-'-"

..;--
'"

---- —

—

Number of NNs(k}

Figure 5.17. Results for dififerent database size.

techniques. An important query type in such a case is the k nearest neighbor
query, which requires the determination of the k closest objects to the query
for a given time interval [ts, te\. The major difficulty in such a case is that both
queries and objects change positions continuously, and therefore the methods
that solve the problem for the static case can not be applied directly.

In this chapter, we performed a study of efficient methods for NN query
processing in moving-object databases, and several performance evaluation ex
periments to compare their efficiency. The main conclusion is that the proposed
algorithm outperforms significantly the repetitive approach for different param
eter values. Future research may focus on:

• extending the algorithm to work with moving rectangles (although the ex
tension is simple, the algorithmic complexity increases due to more distance
computations),

• providing cost estimates concerning the number of node accesses, the num
ber of intersection checks and the number of distance computations, and

• adapting the method to operate on access methods which store past positions
of objects (trajectories) to answer past queries.

6. Further Reading
Many research efforts have focused on indexing schemes and efficient pro

cessing techniques for moving-object datasets [4, 37, 54, 110, 124, 136]. In
dexing and query processing for past positions of objects are addressed in many
research works such as [66, 81,100,129,146]. Indexing issues for present and
future positions of objects are addressed in [4,44,47, 53, 54, 60, 77,110,144].

Recently, there is an interest in indexing and query processing for moving
objects whose movement is constraint by an underlying spatial network (e.g., a
road network, a railway network). Some important research results in the issue
have been reported in [91, 117, 120].

Ill

NEAREST NEIGHBOR SEARCH WITH MULTI
PLE RESOURCES

Chapter 6

PARALLEL AND DISTRIBUTED DATABASES

1. Introduction
One of the primary goals in database research is the investigation of innova

tive techniques in order to provide more efficient query processing. This goal
becomes much more important considering that modern applications are more
resource demanding, and are usually based on multiuser systems. A database re
search direction that has been vi'idely accepted by developers is the exploitation
of multiple resources (e.g., processors,disks) towards more efficient processing.

The exploitation of multiple computer resources can be performed by using
either a parallel database system or a distributed database system. Although
there are several similarities between these two approaches, there are also some
fundamental differences. Examples of the two approaches are given in Figure
6.1.

Back-End Parallel System

(a) parallel database system (b) distributed database system

Figure 6.1. Parallel and distributed database systems.

15

76 NEAREST NEIGHBOR SEARCH

In a parallel database system, usually the processors are tightly coupled in
a single computer system. However, in some cases (e.g., networks of work
stations) processors are loosely coupled and reside in different machines. Pro
cessors cooperate to provide efficient query processing. The user is not aware
of the parallelism, since she has no access to a specific processor of the sys
tem. According to the parallel architecture, the processors may have access to
a common memory, or they can communicate by message passing. In the latter
case the processor interconnection is achieved by means of high-speed links.
Parallelism can be categorized in:

• CPU parallelism: A task is partitioned to several processors for execution

• I/O parallelism: The data are partitioned to several secondary storage units
(disks or CD-ROMs) to achieve better I/O performance.

Distributed database systems are usually loosely coupled and are composed
by independent machines. Moreover, each machine is capable of running its
own applications and serve its own users. Data are partitioned to the different
machines, and therefore several machines should be accessed to answer a user
query. Due to the loosely coupled approach, the network communication cost
is significant and should be taken into consideration. Specialized algorithms
for distributed query processing, distributed query optimization and distributed
transaction support have been proposed to provide efficient access to physically
distributed data. As in the case of parallel database systems, a distributed
database system should provide distribution transparency. In other words, users
and applications need not worry about the data distribution. The distributed
DBMS is responsible to deliver the appropriate data from remote hosts.

2. Multidisk Systems
Generally, in a database system the data collection resides on disk unit(s).

In addition, the index that is used to provide access to the data is also stored on
disk. In some cases the index size is small enough to be maintained in main-
memory. However, a database system usually manages more than one indexes
and therefore it is not possible to keep all of them in-core. Since generally an
index is stored on disk, one of the I/O technologies that have affected access
method design is the disk array. A disk array is composed of two or more disks,
each one containing different database parts.

Using more than one disk devices leads to increased system throughput, since
the workload is balanced among the participating disks and many operations
can be processed in parallel. RAID systems have been introduced in [99] as an
inexpensive solution to the I/O bottleneck. Using more than one disk devices,
leads to increased system throughput, since the workload is balanced among the
participating disks and many operations can be processed in parallel [19, 20].

Parallel and Distributed Databases 77

A typical layout of a disk array architecture is illustrated in Figure 6.2, where
four disks are attached to a processor.

Figure 6.2. Example of disk array architecture.

Given a multidisk architecture, one faces the problem of partitioning the data
and the associated access information to take advantage of the I/O parallelism.
The way data are partitioned reflects the performance of read/write operations.
The declustering problem attracted many researchers and a lot of work has
been performed towards taking advantage of the I/O parallelism, to support
data intensive applications. Techniques for B+-tree declustering have been
reported in [113]. In [149] the authors study effective declustering schemes
for the grid file structure, whereas parallel M-trees are studied in [147]. Here
we focus on the R-tree access method. The challenge is to decluster an R-tree
structure among the available disks to:

1 distribute the workload during query processing as evenly as possible among
the disks, and

2 activate as few disks as possible.

There are several alternative designs that could be followed to take advantage
of the multiple disk architecture. These alternatives have been studied in [48],
and are briefly discussed below:

Independent R-trees
The data are partitioned among the available disks, and an R-tree is build for each
disk (see Figure 6.3). The performance depends on how the data distribution is
performed:

• data distribution: The data objects are assigned to different disks in a round-
robin manner, or by using a hash function. This method guarantees that each

7 8 NEAREST NEIGHBOR SEARCH

disk will host approximately the same number of objects. However, even
for small queries, all disks are likely to be activated to answer the query.

• space distribution: The space is divided to d partitions, where d is the
number of available disks. The drawback of this approach is that due to the
non-uniformity of real-life datasets, some disks may host a greater number of
objects than other disks, and therefore may become a bottleneck. Moreover,
for large queries (large query regions) this method fails to balance the load
equally among all disks.

Figure 6.3. Independent R-trees.

R-tree with Super Nodes
This alternative uses only one R-tree (see Figure 6.4). The exploitation of the
multiple disks is obtained by expanding each tree node. More specifically, the
logical size of the tree node becomes d times larger, and therefore each node is
partitioned to all d disks (disk stripping). Although the load is equally balanced
during query processing, all disks are activated in each query. This happens
because since there is no total order of the rectangles (MBRs) that are hosted in
a tree node, each node must be reconstructed by accessing all the disks (each

Figure 6.4. R-tree with super-nodes.

Parallel and Distributed Databases 79

node is partitioned among all disks).

Multiplexed (MX) R-tree
This alternative uses a single R-tree, having its nodes distributed among the
disks. The main difference with an ordinary R-tree is that interdisk pointers
are used to formulate the tree structure. Each node pointer is a pair of the form
< diskID,pageID >, where diskID is the disk identifier containing the page
pagelD. An example MX R-tree with 13 nodes distributed in 3 disks is given
in Figure 6.5. The number near each node denotes the disk where the node
resides.

UT TTT TTTTTT TTT TT
detailed description of objects

Figure 6.5. MX R-tree example.

The main issue that must be explained is the node-to-disk assignment policy.
The insertion of new objects will cause some nodes to split. The problem is
to which disk the newly created node iV„ will be assigned, and the target is to
minimize the query response time. In order to obtain the best result, we could
examine all nodes that lie in the same tree level. However, this operation is very
costly because it results in many FO operations. Instead, only the sibling nodes
are examined, i.e. the nodes that have the same parent with A'„. Moreover, it is
not necessary to fetch the sibling nodes, since the information that we require
(MBRs) resides in the parent node (which has been fetched already in memory
to insert the new object). There are several criteria that could be used to perform
the placement of the new node Nn'-

• data balance: In the best case, all disks must host the same number of
tree nodes. If a disk contains more nodes than the others, it may become a
bottleneck during query processing.

area balance: The area that each disk covers plays a very important role
when we answer range queries. A disk that covers a large area, will be
accessed with higher probability than the others, and therefore it may become
a bottleneck.

80 NEAREST NEIGHBOR SEARCH

• proximity: If two nodes are near in space, the probability that they will be
accessed together is high. Therefore, proximal nodes should be stored to
different disks to maximize parallelism.

Although it is very difficult to satisfy all criteria simultaneously, some heuris
tics have been proposed to attack the problem:

• round-robin: The new node is assigned to a disk using the round-robin
algorithm.

• minimum area: This heuristic assigns the new node to the disk that covers
the smallest area.

• minimum intersection: This heuristic assigns the new node to a disk trying
to minimize the overlap between the new node and the nodes that are already
stored in this disk.

• proximity index: This heuristic is based on the proximity measure which
compares two rectangles and calculates the probability that they will be ac
cessed together by the same query. Therefore, rectangles (which correspond
to tree nodes) with high proximity must be stored in different disks.

Several experimental results have been reported in [48]. The main conclu
sion is that the MXR-tree with the proximity index method for node-to-disk
assignment outperforms the other methods. The performance evaluation has
been conducted by using uniformly distributed spatial objects and uniformly
distributed range queries. The proposed method manages to activate few disks
for small range queries, and activate all disks for large queries, achieving good
load balancing, and therefore can be used as an efficient method for paralleliz
ing the R-tree structure. It would be interesting to investigate the performance
of the method for non-uniform distributions.

The MXR-tree access method is used in Chapter 7 to support NN query
processing in a multidisk system. The branch-and-bound nature of the funda
mental NN algorithm leads to decreased parallelism exploitation. Therefore,
new algorithms are required that could take advantage of the multiple disk units
in a more efficient way.

3. Multiprocessor Systems
The design of algorithms for multiple resource exploitation is not a triv

ial task. Although in some cases the parallel version of a serial algorithm
is straightforward, one must look carefully at three fundamental performance
measures:

1 speed-up: The speed-up measure shows the capability of the algorithm
when the number of processors is increased and the input size is constant.

Parallel and Distributed Databases 81

The perfect speed-up is the linear speed-up, meaning that if T seconds are
required to perform the operation with one processor, then T/2 seconds are
required to perform the same operation using two processors.

2 size-up: Size-up shows the behavior of the algorithm when the input size is
increased and the number of processors remains constant.

3 scale-up: Finally, scale-up shows the performance of the algorithm when
both the input size and the number of processors are increased.

There are three basic parallel architectures that have been used in research
and development fields (see Figure 6.6):

• shared everything: All processors share the same resources (memory and
disks), whereas the communication among processors is performed by means
of the global memory.

• shared disk: All processors share the disks but each one has its own memory.

• shared nothing: The processors use different disks and different memory
units, whereas the communication among processors is performed using
message passing mechanisms.

shared everything

Figure 6.6. Parallel architectures.

As in a multidisk system, in a multiprocessor system several issues must be
taken into consideration to guarantee acceptable performance. In the sequel,
we focus on the shared-nothing architecture, which is the most promising with
respect to scalability [26]. Since each processor controls its own disk unit(s) we
are facing (again) the problem of data distribution. Moreover, interprocessor
communication costs must be considered, since in many cases this cost is signif
icant and affects query processing performance. Apart from data distribution,
index distribution is another important issue.

82 NEAREST NEIGHBOR SEARCH

In [58] Koudas et. al. propose an R-tree distribution technique to support
spatial range queries in a network of workstations. However, this technique can
be applied to any shared-nothing parallel architecture as well. The R-tree leaf
level is distributed to the available computers, whereas the upper tree levels are
stored in the master. Since, the upper R-tree levels occupy relatively little space,
they can be kept in main memory. Given that the dataset is known in advance,
Koudas et. al. suggest sorting the data with respect to the Hilbert values of
the MBRs' centroid. Then, the tree leaf level is formed, and the assignment of
leaves to sites is performed in a round-robin manner. This method guarantees
that leaves that contain objects close in the address space will be assigned to
different sites, thus increasing the parallelism during range query processing.
In Figure 6.8 we present a way to decluster the R-tree of Figure 6.7 in three
sites, one primary and two secondary.

f

1
\^

|.v;.;-:..:/

1""

D

1
n i B

..

.|
1

nn

t
.,

f.
iL

1
J

1 !
! i. ..

"• "' 1

„..„j

Figured.?. R-tree example.

PRIMARY SITE

Figure 6.8. Declustering an R-tree over three sites.

This architecture is used in Chapter 8 to process NN queries. Although the
fundamental NN algorithm for R-trees is directly applicable, its performance

Parallel and Distributed Databases 83

is not expected to be satisfactory due to increased communication costs posed
by its branch-and-bound nature. Therefore, we provide efficient algorithms
that are more appropriate in a parallel setting, by accessing several processors
concurrently.

4. Distributed Systems
A distributed database is supported by a number of computers that are loosely

coupled, and communicate by means of a network configuration. Communica
tion costs are even more important than in a shared-nothing parallel architecture.
In such a configuration, each computer may run its own applications and partic
ipate in query processing if this is necessary. Data are partitioned and according
to access patterns may be replicated as well, to increase query processing per
formance and avoid communication costs when needed. For example, in a
distributed database system based on the relational data model, a relation (ta
ble) may he. fragmented horizontally (row-wise) or vertically (column-wise).
The various fragments are distributed to the available computer systems, by
allowing storing the same fragment to more than one computers. An example
of horizontal and vertical fragmentation is depicted in Figure 6.9.

J Computer 1

[Computer 2

y Computer 3

m 1
2
3
4
5
6

Hium
Athens
Vienna

Amsterdam
Madrid
Rome
Paris

F^Mcw
4,0S0,«»0
1,850,000
2,100,000
5,150,000
3,300,000
9,800,000

c<mi»
Gf8»C»
Austria

Netheriands
Spain
Italy

France

X -
700
350
600
200
350
300

r
100
500
600
200
400
600

(a) horizontal fragmentation

f$
1
2
3
4
5
8

Mmm
Athens
Vienna

Amsterdam
IVIadrid
Rome
Paris

J^^^K_
4,000,000
1,850,000
2,100,000
5,150,000
3,300,000
9,800,000

Computer 1

(b) vertical fragmentation

JI 1
2
3
4
5
6

».

^Hm^
Gf8«08
Austria

Netheriands
Spain
Italy

France

/
Computer 2

m 1
2
3
4
5
6

X
700
350
600
200
350
300

If
100
500
600
200
400
600

Computer 3

Figure 6.9. Horizontal and vertical fragmentation.

We assume that a spatial relation has been horizontally fragmented and dis
tributed to a number of databases, which may be heterogeneous (i.e.,they may
be based on different data models and architectures). The system is composed
of a primary server that operates as a coordinator for the source databases. All
systems communicate via a network configuration (see Figure 6.10). We as
sume that query requests are initiated by a user's system and then submitted

84 NEAREST NEIGHBOR SEARCH

to the primary server for evaluation. Also, the query results are gathered from
the source databases to the primary server and then are shipped back to the ap
propriate user's system. Despite the fact that we perform a distinction between
primary and secondary sites, any secondary site could take responsibility of
evaluating user queries. Each source database has complete control over the
objects that it stores. Therefore, different access methods and optimization
techniques may be utilized by different databases.

Primary Server

Figure 6.10. Distributed database architecture.

In such a system, the challenge is to support similarity queries, and particu
larly /c-NN queries, as efficiently as possible. In Chapter 9 we study exactly this
problem, where several different processing methods are proposed and evalu
ated experimentally. Answering similarity queries in a distributed system is
considered very important, taking into consideration the exponential growth of
the world wide web (WWW), where millions of computer systems are con
nected to form a large pool of useful information.

5. Summary
The exploitation of multiple system resources is considered a promising

approach towards increased query processing efficiency. In this chapter we
discussed briefly the basic concepts of parallel and distributed database systems.
In order to take advantage of multiple resources (processors and disks) efficient
data partitioning, index partitioning and query processing methods should be
designed. In cases where the processors are loosely coupled, the communication
cost must be taken into account, since it is quite significant, specifically for low-
bandwidth network configurations.

We separate amongst three different configurations, namely: 1) multidisk
systems, 2) multiprocessor systems and 3) distributed systems. For each case
we briefly discussed the main arising issues. The three upcoming chapters

Parallel and Distributed Databases 85

deal with the above system architectures separately, with respect to NN query
processing.

6. Further Reading
There is a significant amount of research work regarding parallel and dis

tributed database systems. Two very important textbooks on distributed database
systems are the books by Ceri and Pelagatti [18], and Ozsu and Valduriez [86].
Although a lot of research has been performed since the publishing time of
these textbooks, the issues studied in [18, 86] are very important to understand
the main ideas behind data distribution and distributed query processing.

A collection of important research papers for parallel relational database sys
tems can be found in [67]. Some of the issues covered are: parallel database
architectures, parallel sorting, parallel join processing and parallel query opti
mization.

Chapter 7

MULTIDISK QUERY PROCESSING

1. Introduction
Nowadays, several large databases world-wide are supported by large stor

age devices that are capable of servicing many I/O requests in parallel. This is
feasible by exploiting disk array technology aiming at both increased data avail
ability and increased I/O throughput. Data availability is increased because if
a disk failure occurs, access to the corresponding data is provided by the other
disk array units. Throughput increase is feasible, since two concurrent requests
for the same data can be served (probably) by different disk units. However,
throughput is highly dependent on the specific disk array architecture used, and
the data striping method supported by the disk controller.

In the majority of cases, an algorithm suitable for a uni-disk system is not
appropriate in a multidisk architecture. Therefore, existing uni-disk methods
should be adapted accordingly to provide acceptable query processing perfor
mance. In this respect, this chapter studies the problem of NN query processing
in a multidisk system. It is assumed that an R-tree is used to index the underlying
dataset, which is composed of multidimensional points.

The material of this chapter is based on [95] and is organized as follows.
In the next section we discuss several algorithms that could be used to process
NN queries in a multidisk system. Among them, the NN algorithm studied in
Chapter 3 is also briefly discussed for completeness. Two more algorithms are
given, namely: the full-parallel similarity search and the candidate reduction
similarity search. Moreover, a hypothetical optimal algorithm is given, which
performs the minimum possible number of disk accesses, and it is used for
comparison purposes. Section 3 contains the performance evaluation performed
based on real-life and synthetic datasets. Finally, Section 4 summarizes the
work.

87

8 8 NEAREST NEIGHBOR SEARCH

2. Algorithms
In this section we discuss several algorithms for NN query processing in

case of a multidisk system. We begin our exploration with the NN algorithm
discussed in Chapter 3. Since this algorithm is based on branch-and-bound, it is
not directly applicable in a parallel setting. Therefore two more algorithms are
given that are more appropriate for a multidisk system. For comparison reasons,
an hypothetical optimal algorithm is also given, which issues the minimum
possible number of disk accesses.

2.1 The Branch-and-Bound Algorithm
The first algorithm is essentially the algorithm proposed by Roussopoulos et.

al. [106]. This algorithm has been described in detail in Chapter 3. Hereweonly
review some of the fundamental characteristics. The algorithm is based on a
branch-and-bound R-tree search. In order to find the nearest neighbor of a query
point, the algorithm starts form the R-tree root and proceeds towards the leaf
level. The key idea of the algorithm is that many tree branches can be discarded
according to some basic rules. These rules use two fundamental distances,
MINDIST{P, R) and MINMAXDIST{P, R) between a rectangle R and
a point P.

In order to process general fc-NN queries, an ordered sequence of the current
k most promising answers has to be maintained, and the MBR pruning has to be
performed with respect to the furthest distance. Thus, an MBR R is discarded
if MINDIST{R, P) from the query point P is greater than the actual distance
from the query point to its A;-th nearest neighbor. Henceforth, this algorithm
will be referred to as Branch and Bound Similarity Search (BBSS).

2.2 Full-Parallel Similarity Search
An efficient algorithm for similarity search on disk arrays must be charac

terized by some fundamental properties:

• parallelism must be exploited as much as possible,

• the number of retrieved nodes must be minimized,

• the response time of user queries should be reduced as much as possible,
and

• throughput must be maximized.

Usually, if the first three properties hold then the last also holds. The problem
is that the first two properties are contradictory for similarity search.

Observing how the sequential algorithm works, we see that a careful refine
ment of the candidate nodes is performed, trying to avoid node accesses that
will not contribute to the final answer. In order to exploit I/O parallelism in

Multidisk Query Processing 89

similarity search, we have to access several nodes (residing in different disks)
in parallel. Intuitively this implies that the granularity of the refinement must
be coarsened. This also implies that some of the accessed nodes eventually will
be proved irrelevant with respect to the final answer, and therefore they should
have never been accessed.

Compare the above scheme with a range query. A range query is described
by a well-defined region of arbitrary shape (usually hyper-rectangular or hyper-
spherical) and all objects intersecting this region are requested. After a node
is accessed, we are able to determine which of its children need to be visited
by inspecting the corresponding MBRs that are located in the node. Then, the
disks that host the relevant children nodes can be activated in parallel. Evi
dently, the visiting sequence of the relevant nodes is not important, since any
such sequence leads to the same answer (assuming only read-only operations).
On the other hand, in similarity search, the visiting order is the most important
parameter in performance efficiency, since it is responsible for the further prun
ing of irrelevant nodes. Note that even in range query processing, an accessed
node may not contribute to the final answer, but this fact is due to empty space
and the use of conservative approximations, and it is irrelevant to the visiting
order of the nodes. Therefore, we come up with a problem definition, which is
stated as follows:

Problem Definition
Given a query point P in n-d space and an integer number k, determine an ef
ficient search of the parallel R*-tree, in order to report the k nearest neighbors
of P, trying to (i) maximize parallelism, (ii) access as few nodes as possible,
and (iii) reduce response time. •

From the above discussion we observe that two fundamental sub-problems
must be solved:

• to determine an effective way of pruning irrelevant nodes in every tree level,
and

• to use a clever criterion to decide which nodes and when are going to be
accessed in parallel.

In the remaining of this subsection we develop a query processing technique
aiming to solve the aforementioned problems and reach the targets presented
in the beginning of this subsection. We continue with an important definition
regarding the maximum possible distance MAXDIST between a point and a
hyper-rectangle.

Definition 7.1
The distance MAX.DIST between a query point P and an MBR R is the

90 NEAREST NEIGHBOR SEARCH

distance from P to the furthest vertex of R and equals:

MAXDIST{P, R) ^
\

..12

where:
I -t- ^ 3 ' J

r- = •; J' Pj — 2
•' \ Sj, otherwise

D

To distinguish between the three distances {MINDIST, MINMAXDIST
and MAXDIST) an example is illustrated in Figure 7.1, showing a point, two
rectangles and the corresponding distances.

MINDIST •

MINMAXDIST >

MAXDIST •

Figure 7.1. MINDIST, MINMAXDIST and MAXDIST between a point P and two
rectangles Ri and i?2 •

We continue with a general description of a similarity search strategy in disk
arrays. Later we investigate more thoroughly the important points and provide
values for the parameters. The first node that is inspected by the algorithm
is, evidently, the root of the parallel R*-tree. Note that at this stage (and until
the first k objects are visited) there is no available information concerning the
upper bound for the distance to the k-th nearest neighbor. Let in the current
node A'' reside m MBRs, pointing to m children nodes. The question is which
of the m branches can be discarded (if any), and how can we obtain the needed
information to perform the pruning. In order to proceed, we need to calculate
a threshold distance. The following lemma explains:

Lemma 7.1
Assume we have m MBRs Ri,..., Rm where MBR Rj contains 0(Rj) objects.
Given a query point P, the k nearest neighbors with respect to P are requested.
Assume further that all m MBRs are sorted in increasing order with respect to
the MAXDIST distance from the query point P. Then, all k best answers
are contained inside the circle (sphere, hyper-sphere) with center P and radius

Multidisk Query Processing 91

r = MAX£'7S'T(P,i?2:) where a; is determined from the following inequality:

x-l

J20{Rj)<k<^0{Rj)

Proof (omitted)

(7.1)

D

Using the above lemma we can always determine a threshold distance Dth-
Having Dth, some of the m entries may be rejected immediately. An example
is illustrated in Figure 7.2. The threshold distance in the example equals:
Dth = MAXDIST{P,Ri). It can be easily observed that MBRE5 is rejected
since the dotted circle is guaranteed to contain all the relevant answers, and R^
does not intersect the circle. However, there are some MBRs like i?2, ̂ 3 and
i?4, which are intersected by the circle. Therefore, the set of candidate MBRs
is composed of i?i, i?2, -^3 and R^. The problem arising is which of these
candidates will be searched in the next step and which will be saved for future
reference.

« 5

,-

/ / /
/ 1

1

X

Ri

\

- - - - ^ .
\ fi,

p

\ \
\ R4

/

Figure 7.2. Illustration of praning and candidate selection.

Assume in general that mi out of m entries have been pruned (like R^ in the
example). Now, we have m2 — m — mi entries that need further inspection.
The most straightforward approach is to assume that all these 7712 entries will
eventually contribute to the final answer and therefore have to be searched.
This technique is the main idea of the Full Parallel Similarity Search algorithm
(FPSS), which is very optimistic with respect to the usefulness of a node.

2.3 Candidate Reduction Similarity Search
Instead, we propose to apply a heuristic here to (possibly) reduce the number

of candidate MBRs. When observing Figure 7.2, it seems that MBR R2 has
better chances to contain relevant objects than MBRs i?3 and R^. Therefore,
candidates i?3 and -R4 are saved for future reference, whereas -Ri and R2 will

92 NEAREST NEIGHBOR SEARCH

be searched. The criterion for candidate reduction has as follows:

Candidate Reduction Criterion
Given a query point P, a threshold distance Dth and a set of MBRs TZ =
{Ri,..., Rm} then for an MBR R^:

(i) if Dth < MINDIST{P, R^), then R^ is rejected.

(ii) if Dth > MINMAXDIST{P, R^), then R^ is set active.

(iii) if Dth > MINDIST{P, R^) and Dth < MINMAXDIST{P, R^),
then Rx is saved for possible future reference. D

The activation list contains the addresses to all nodes that are going to be
requested from the disks in the current step. Each entry contains a pointer to its
son. This means that we can fetch the nodes pointed by i?i and R2 from the disk
array (if these nodes reside on different disks this can be done in parallel). Notice
that up to now, no real object has been visited. As soon as the first k objects are
retrieved, we have a more precise knowledge regarding the distance D^ from
the query point P to its fc-th nearest neighbor. Every time the distance D^ is
updated due to access of data objects, the structure maintaining the remaining
candidate MBRs is searched and new MBRs become active. The algorithm that
is obtained from the application of the heuristic is called Candidate Reduction
Similarity Search (CRSS).

Evidently, for the CRSS method to work, some auxiliary data structures
need to be maintained. Based on the previous discussion we can identify three
auxiliary structures:

• a structure to maintain the pointers to the nodes that are going to be fetched
in the next step (activation structure),

• a structure to hold the newly fetched nodes to process them further (fetch
structure), and

• a structure to store the candidate MBRs that have neither been searched nor
have they been rejected yet (candidate structure).

The structures for (i) and (ii) can be simple arrays or linked lists and no spe
cial treatment is required. As soon as the currently relevant pointers (node
addresses) have been collected in the activation structure, requests are sent to
the corresponding disks to access the required nodes. When the disks have pro
cessed the requests, the nodes are collected in the fetch structure where further
processing (pruning, candidate reduction, etc.) can be performed. The auxil
iary structure to store the candidate MBRs must however be a stack, with its
entries organized in a convenient way that helps processing. The cooperation
of all three structures is explained in the following illustrative example.

Multidisk Query Processing 93

R11

N2

R12

3

B13

3 3

R1

R21

R2 R3

N3

R22

3

R23

3 1.

R31

N4

R32

3

R33

. 3

N6 N6 N7 N8 N9 N10 N11 N12 N13

Figure 7.3. Example of an R*-tree with 13 nodes and 3 entries per node.

Example
An R*-tree is illustrated in Figure 7.3, where all tree nodes are assumed to hold
three occupied entries. Nodes are numbered from Â i to N13. Let us trace
the execution CRSS algorithm for a simple query requiring the A; = 4 nearest
neighbors of a query point.

Iiui)«:led:Rl,RI,R3
Selected: Rl, R2
Rejected: none
Saved Caiwiiibse :̂ R3

(a) (b)

Inspected: Rll, R12, R13.S21, R22, R23
Selected: Rll,R2l,R22
Rejected: R23
Sii'.»ii Caniiidafe.!: Rll, R13

Inspected R12.R13
Selected R12
Rejected R13
StU'ed Cimdidatft'.: oone

(C)

Figure 7.4. Illustration of the first three stages of the CRSS algorithm. Different candidate
runs are separated by guards, indicated by shaded boxes.

The algorithm begins with the root (node A''!) where the MBRs R\, R2 and
i?3 reside. Assume that Ri and R2 qualify for immediate activation (according
to the candidate reduction criterion), whereas Rz is considered as a possible
candidate MBR. No MBR is being rejected here. The pointers to the nodes
N2 and iVs are maintained in the activation structure and MBR i?3 is pushed
into the candidate stack. Note that the candidates are pushed in decreasing
order with respect to the MINDIST from the query point. After the stack
is updated, we are ready to fetch nodes N2 and N3 from the disks. Assume
that these two nodes reside in different disks and therefore the requests can be
serviced in parallel. The situation is depicted in Figure 7.4(a).

In the next step, entries Rn through R23 are inspected. Assume that we
have concluded that entry R23 is rejected, Rn, i?2i and R22 will be activated,

94 NEAREST NEIGHBOR SEARCH

and finally R\2 and i?i3 will be saved in the stack. The situation is illustrated
in Figure 7.4(b).

The following stage involves the access of the data nodes A ŝ, Ns, and NQ.
This is the first time during the execution of the algorithm that real data objects
contribute to the formulation of the upper bound to the fc-th best distance (where
k=A). Therefore, the best 4 out of 9 objects, contained in the 3 data pages,
are selected and the distance Dth is updated accordingly. Now we pop from
the stack the first candidate run that is composed of the MBRs R12 and i?i3.
After comparing MINDIST{P,Rn) and MINDIST{P,Rii) with Dth,
we conclude that R12 is intersected by the query sphere, whereas R12, can be
safely rejected. The current situation is depicted in Figure 7.4(c).

In the next step, node NQ is accessed, the distance Dth is updated and the next
candidate run is popped from the stack. This run contains only R^,. Comparing
MINDIST{P, R3) with Dth, we find that there is no intersection with the
query sphere and therefore R3 is rejected from further consideration. Now the
algorithm has been terminated, the best k matches have been determined and
Dth=Dk. a

Let us explain the use of the stack, and why is the appropriate structure in
our case. As we descent the tree from root to leaves, the granularity of MBRs
increases, since the empty space is reduced. Therefore, the information obtained
from the MBRs near the leaf level is more precise than the information obtained
from MBRs near the root. It is not wise to start the inspection of a new branch
in a higher R*-tree level, if there are still candidate branches to be inspected in
a lower level. The structure that captures this concept is the stack. Therefore,
using a stack, candidate MBRs that belong to a high level are pushed in the stack
before candidates of a lower level. Moreover, organizing the candidates in the
stack by means of candidate runs, helps in pruning. The candidates in each run
are sorted in increasing order with respect to the MINDIST distance from the
query point. When a candidate run is inspected and a candidate is found that
does not intersect any more the query sphere, we know that all the remaining
candidates in the current run should be rejected from further consideration. A
guard entry is used to separate two different candidate runs. This technique
saves computational power during candidate elimination and leads to faster
processing.

In Figure 7.5 the CRSS algorithm is sketched. There are four basic operating
modes that the algorithm can be at some given time:

• The algorithm operates in ADAPTIVE mode from the time the root is
examined until the leaf level is reached for the first time. During this period,
the upper bound of the threshold distance Dth is adapted when passing from
one tree level to the next one. When the algorithm leaves this mode, it never
goes into it again during the remaining part of the execution.

Multidisk Query Processing 95

Algorithm CRSS
Input: P /* quety point */

kl* number of nearest neighbors */
r /« a parallel R "-tree */

Output; A" nearest neighbors of P
Init: Dn, = Inf, mode=ADAPTIVE,

AL=EMPTY, CS^EMPTY, Ft=EMPTY

1. Read Root(7) and place MBRs in FL;

2. If (leaf-level reached) set mode^UPDATE;
3. Process{FL);
4. if {mode is not TERMINATE)

{
Access nodes that have been recorded
in AL structure;
GOTO 2;

}
else STOP;

/•
Routine to obtain the next candidate rvn Srom the
Candidate Stack (CS)
*l
Get_Candidate_Run (CS)

{
if (no candidate run exists)

{
set mode=TERMINATE;
rettim;

}
else

pop next candidate run from CS;
eliminate non-relevant MBRs;
place relevant MBRs into AL\
set morfe=NORMAL;
return;

/*
Routine to process a number of newly fetched
MBRs . Afiar returning the addresses of the needed
nodes reside in the AL structure. */
Process {FL)

i
if (mode is ADAPTIVE)

{ _
find new value for Dnj;
formulate new canidate run;
push run into CS;

}
else
if (mode is NORMAL)

{
eliminate non-relevant MBRs;
if (F i is EMPTY)

{
Get_Candidate_Run (CS);
Place elevant MBRs into AL;

}
}
else

if (mode is UPDATE)

{
calculate new set of nearest-neighbors;
Get_Candidate_Run (CS);

}

Figure 7.5. The most important code fragments of the CRSS algorithm.

Every time the leaf level is reached, the algorithm goes into UPDATE mode.
This means that the array holding the current best k distances is (possibly)
updated, since more data objects have been accessed.

In any other case, the algorithm operates in NORMAL mode. This mode
includes the cases where the algorithm operates in an intermediate tree level
but after the first time the leaf level is reached.

96 NEAREST NEIGHBOR SEARCH

• Finally, the TERMINATE mode signals that there are no more candidate
nodes to be searched, and therefore the k best distances have been deter
mined.

It is observed that FPSS and BBSS are special cases of the CRSS algorithm.
FPSS does not use a candidate stack and activates all MBRs that intersect
the current query sphere, maximizing intraquery parallelism, whereas BBSS
activates the MBRs one at a time, limiting the degree of intraquery parallelism.
Let us elaborate more in code fragments A and B shown in Figure 7.5. In A,
the candidate reduction criterion is applied. Among the fetched MBRs, some
of them are discarded immediately, and some will be saved in the candidate
stack for future reference. The restriction applied here is that the number of
activated MBRs should be > I and < w, where I is the number of MBRs which
guarantee the containment of at least k points in the activated MBRs, and u
equals the number of disks in the system (NumOf Disks). This restriction
is used to bound the number of fetched nodes in the next step. A similar
policy is used in the B code fragment. Here, the candidate reduction criterion
is again applied. When there is a need to pop the next candidate ran from the
stack, we never allow the activation of more than u=NumO f Disks elements.
Using this technique, there is a balance between parallelism exploitation and
similarity search refinement. Keep in mind however, that this technique needs a
good declustering scheme. In order for the u MBRs to reside in different disks,
the declustering scheme must be as close to optimal as possible.

We close this subsection by providing a theorem which shows that the CRSS
algorithm is correct:

Theorem 7.1
Given a query point P and a number k, algorithm CRSS reports the best k
nearest neighbors of P.

Proof
Basically, the algorithm can be considered as a repetition of three steps: (i)
candidate elimination, (ii) generation of new candidates and (iii) retrieval of
new data. Since the threshold distance Dth guarantees the inclusion of the best
answers (Lemma 7.1) and only irrelevant MBRs are eliminated (according to
the candidate reduction criterion), it is impossible that a best match will be
missed. Moreover, the algorithm reports exactly k answers, unless the total
number of objects in the database is less than k, in which case reports all the
objects. •

Multidisk Query Processing 97

2.4 Optimal Similarity Search
Designing an algorithm for similarity search we need a criterion to charac

terize the algorithm as efficient or inefficient. The ideal would be to design an
optimal algorithm, guaranteeing the best possible performance. In the context
of similarity search, two levels of optimality are identified: weak and strict
which are defined as follows.

Definition 7,2
A similarity search algorithm is called weak-optimal, if for every fc-NN query
the only nodes that are accessed are those that are intersected by the sphere hav
ing center the query point and radius the distance to the fc-th nearest neighbor. •

Definition 7.3
A similarity search algorithm is called strict-optimal, if it is weak-optimal, and
in addition for every fc-NN query the only objects that are inspected lie in the
sphere with center the query point and radius the distance to the /c-th nearest
neighbor. D

It is evident that for an algorithm to be either weak-optimal or strict-optimal,
the distance from the query point to the /c-th nearest neighbor must be known
in advance. Moreover, in strict optimality the algorithm must also process only
the objects that are enclosed by the sphere with center P and radius Dk- This
implies a special organization of the data objects and it is rather impossible to
achieve strict optimality in similarity search. Also, although weak optimality
still imposes a strong assumption, we assume the existence of a hypothetical
algorithm Weak OPTimal Similarity Search (WOPTSS), and we include it
in our experimental evaluation. The performance of WOPTSS method serves
as a lower bound for the performance of any similarity search algorithm. The
following theorem illustrates that the algorithms presented previously are not
optimal:

Theorem 7.2
The similarity search algorithms BBSS, FPSS and CRSS operating over an
R*-tree, are neither strict-optimal nor weak-optimal.

Proof (sketch)
We can find a counterexample for all algorithms with respect to certain query
points and R*-tree layouts, showing that neither the minimum number of nodes
are visited, nor the minimum number of objects are inspected. D

The number of accessed nodes is a good metric for the performance of a
similarity search algorithm in the sequential case. However, in the parallel

98 NEAREST NEIGHBOR SEARCH

case the situation is more complicated. When processing similarity queries
on a disk array, one wants high paralleHsm exploitation in addition to small
number of accesses. A more concrete measure of efficiency in this case is the
response time of a similarity query in a multiuser environment. Evidently, one
can use the response time of a single query but this does not reflect reality. To
see why, assume that an algorithm A accesses half of the pages with respect
to algorithm B. On a disk array, the I/O subsystem is capable of servicing
several requests in parallel. Therefore, we may notice no difference in the
response time of a single query for both algorithms, whereas in a multiuser
environment the performance of algorithm B is more likely to degrade rapidly
in comparison to the performance of A, due to heavy workloads. The question
we are going to answer in the subsequent section is the following: Which of
the three proposed algorithms performs the best in a multiuser environment,
and how fast this algorithm processes similarity queries in comparison to the
WOPTSS method?

3. Performance Evaluation
3.1 Preliminaries

The algorithms BBSS, FPSS, CRSS and WOPTSS are implemented on top
of a parallel R*-tree structure which is distributed among the components of a
disk array. The behavior of the system is studied using event-driven simulation.
The algorithms and the simulator have been coded in C/C++ under UNIX, and
the experiments have been performed on a SUN Sparcstation4 running Solaris
2.4.

The data sets that are used to perform the performance comparison of the
algorithms include real-life as well as synthetic ones. Obviously, many different
data sets could be included in our study. Among the data sets we have used for
the experiments, the most representative ones are illustrated in the following
figures.

The upper part of Figure 7.6 presents the real-life data sets that are selected
from the Sequoia 2000 (California places - CP) [128] and the TIGER project
(Long Beach -LB) [138]. The CP data set is composed of 62,173 2-d points
representing locations of various California places. The LB data set consists
of 53,145 2-d points representing road segment intersections in Long Beach
county. The lower part of Figure 7.6 presents two of the synthetic data sets that
have been used. The SO set is composed of a number of points distributed with
respect to the Gaussian (normal) distribution. The SU set consists of a number of
points obeying the uniform distribution. The population and the dimensionality
of the synthetic data sets were varying during the experiments. In the figure,
their 2-d counterparts are illustrated, containing 10,000 points each. However,
values up to 300,000 points have been used in the experimentation.

Multidisk Query Processing

350000

300000

200000

150000

100000

50000

t-^«
-
-

'̂̂ F̂**
X ^

""̂ Ka

^ ^

^^M

'^P

&'
^^ re^

- ^ j

K ^ ^

- %

-

'
-

1

400 600 800 1000

Figure 7.6. Datasets used in performance evaluation.

An R*-tree for a particular data set is constructed incrementally (i.e. by
inserting the objects one-by-one). The disks are assumed to communicate with
the processor by means of a common I/O bus. The network queue model of
the system that is used for the simulation is presented in Figure 7.7. Each disk
has its own queue where pending requests are appended. The service policy for
each queue in the system is FCFS (First-Come First-Served). The bus is also
modeled as a queue, with constant service time (the time it takes to transmit
a page from the disk controller through the I/O bus). Queues are also present
in the processor to handle pending requests. However, we assume that when a
new query request arrives, it enters the system immediately without waiting.

It is evident that in a common bus, only one transmission at a time can
take place. Therefore, if two disk controllers demand access to the I/O bus
simultaneously, only one can do so. If other devices are attached on the same

100 NEAREST NEIGHBOR SEARCH

new queries
pending disk requests

Figure 7.7. The simulation model for the system under consideration.

I/O bus, then we may have other (interdevice) conflicts as well. However, in
our study we take into consideration only the conflicts due to the disk array
components ignoring interdevice conflicts, anticipating that the impact of the
latter on the performance comparison is more or less the same for all studied
algorithms.

Query arrivals follow a Poisson distribution with mean A arrivals per second.
Therefore, the query interarrival time interval is a random variable following
an exponential distribution. The service time for the bus is constant, whereas
the service time of a disk access is calculated taking into consideration the
most important disk characteristics (seek time, rotational latency, transfer time
and controller overhead). Moreover, we do not assume that the disks are syn
chronized, and therefore each disk can move its heads independently from the
others. The parameter values that are used in the experimental evaluation are
presented in Table 7.1.

In order to model each disk device, the two-phase non-linear model is used
which is described in detail in [71,108]. \idseek denotes the seek distance that
the head needs to travel, the seek time Tgeefc as a function of dseefe is expressed
by the following equation:

0, dseek = 0 (no seek)

J-seek CI + C2- Vdseek, 0 < dseek < cutoff (short Seek)

C3 + C4 • dseek, dseek > CUtoff (loUg Seek)

where ci, C2, C3 and C4 are constants (in msecs) specific to the disk drive used and
cutoff is a seek distance value, which differentiates the acceleration phase and

Multidisk Query Processing 101

Parameter Description Assigned Value

^node

n

N

k

d

A

B

^ ^ ^ speed

^startup

Node capacity

Space dimensionality

Number of objects

Number of nearest neighbors

Number of disks

Query arrivals per second

I/O bus bandwidth

CPU execution speed

Query startup time

4KB

2 to 30

> 10,000

1 to 700

l t o 4 0

< 3 0

20 MB/sec

100 MIPS

0,001 sec

Table 7.1. Description of query processing parameters.

the steady-speed phase of the disk arm movement. The disk drive characteristics
that is used in the conducted simulation experiments are illustrated in Table 7.2.

Parameter Description Assigned Value

Cyl

T
-t rev

Rtrans

-t seefc

Octrl

C l

C2

C3

C4

cutoff

number of cylinders

disk revolution time

disk transfer rate

disk seek time

disk controller overhead

short-seek constant 1

short-seek constant 2

long-seek constant 1

long-seek constant 2

threshold seek distance

1449

0.0149 sec

5 MB/sec

variable

0.0011 sec

3.45 msec

0.597 msec

10.8 msec

0.012 msec

616

Table 7.2. Description of disk characteristics (model HP-C220A) [108].

102 NEAREST NEIGHBOR SEARCH

During R*-tree creation, each newly generated node (after a split operation)
is assigned a cylinder value with respect to the uniform distribution. Evidently
this is not the best possible allocation strategy, since it does not respect locality.
Placing pages that are referenced together on the same cylinder reduces the dislc
service times and this effect is orthogonal with respect to the similarity search
algorithms, with the difference that response times are reduced. Initially, all
disk arms are positioned in cylinder zero. The simulator executes 100 queries
in total, and the response time per query is obtained by calculating the average.

With respect to CPU execution costs, it is assumed that computation time is
dominated by the scanning and sorting of each requested set of MBRs. Assume
that A'̂ MBRs have been fetched from the disks. The scanning of these MBRs
costs 0{N) time. After scanning, some of them are rejected so that M MBRs
remain in the sequel. In order to sort M elements, the computational effort
is 0{M • logM) comparisons (assuming heapsort or mergesort). Each main
memory word has four bytes and also each number is modeled as four bytes
of main memory. Fetching a number from main memory requires one CPU
instruction. Therefore, to compare two numbers, three CPU instructions are
required (two for fetching the operands and one for the comparison). Thus, the
computation cost for scanning equals 2 • N CPU instructions and the computa
tion time for sorting is equivalent to executing 3 • M • logM CPU instructions,
resulting in a total of2-N+ 2,-M-logM CPU instructions. Since the MIPS rate
for the CPU is a known parameter, the computation time is easily calculated.
Although this cost model is simple, it reflects the CPU overhead to a sufficient
degree. Considering more complex computation models leads to more accurate
simulation results, but the impact on the comparison of similarity search algo
rithms is negligible. Having described the cost model for all the fundamental
simulator components, we continue with the illustration of some representative
performance results.

3.2 Experimental Results
Evidently, it is very difficult to provide experimental results by modifying

all parameter values. Therefore, we choose to illustrate representative results
that shed light in the following interesting issues:

• Effectiveness: how many nodes an algorithm visits to produce the final
answer in comparison to the WOPTSS method,

• Speed-up: how the performance of the methods is affected by increasing
the number of disk array units,

• The impact of query size and dimensionality: how the algorithms perform
with increasing query size and/or space dimensionality,

Multidisk Query Processing 103

The impact of workload: what is the behavior of the methods when concur
rent queries are serviced by the system.

Sel: CalHornia, Po[Hilalion: 62173,

- BBSS -B-^
FPSS -X-
CRSS -»-•-

WOPTSS -»—

-:E;'
^ \^^

Disks: 10, Dimensions: 2

, ^ ' , , . = • ; : :

Sel: Long Beach, Population: 53145, Dislw: 10, Dimensions: 2

• BBSS
FPSS

... CFiSS
WOPTSS r:

_ . . . - • • ; • • • ' '

.--'"

< • ' • / ^ ^ ^ " ^ " ' ' ^ ^

, . < > '

" ^

I ::••••

;

:::3^::

i

\,̂ ^

^̂ -̂

-

0 100 200 300 400 500 600 700
Nearest Neighbors Requested (1 - 700)

Sel: Gaussian, Population: 50000, Disks: 10, Diniensions: 2

0 100 200 300 400 5O0 600 700
Nearest Neighbors Requested (1 • 700)

Set Unifomn, Populatfon: 80000, Disks: 10, Dimensions: 2

]

FPSS -H-

WOPTSS -*—

- \
,.

• . • ' ' ' ' ' " '

y ^.•

*^ ' '• i ^

,Z!^:

. . . • _ _ ; , . , . , . - ' : - ' ^

: " : ^ ^ . • ' .

^^^^^S„^~<^.

;r^^:^

\

•

kr:: .J<^

50

45

35

30

•Ab

20

15

10

FPSS

WOPTSS

- • * '

^
r

!

-*—

^ j ^

'••f

' ~ . . . ' • ' • ' ' ' ^ • '

_^<, „^ r '

-->'''
' = ^

'

'""̂

,-r-

'
^^--
,>-'
'-

i

• • ; ; : :

-^
• : = "

"

-

0 100 200 300 400 500 600 700
Nearest Neighbors Requested (1 - 700)

0 100 200 300 400 500 600 700
NeaiesI Neighbors Requested (1 • 700)

Figure 7.8. Number of visited nodes vs. query size for 2-d data sets.

Set Gaussian, Population: SOOOO, Disks: 10, Dimenskins: 10 Set: Uniterm, Population; flOOOO, Disks: 10, Dimensions: 10

1-
£ 1,06

» :

•x-^

' i

"""'"X--̂

,

!
B B 6 S - e -
CRSS -*--

WOPTSS - » -

i

"-:_...:, •? 1.04 i

s 0.9a

I
= 0,96

^
\

•-

'

• • • • ;

i

^-^-

:

'•

CRSS
•• WOPTSS

"~:-4:—...

; :

- _ .

Figure 7.9. Number of visited nodes (normalized to WOPTSS) vs. query size for synthetic
data in 10-d space.

104 NEAREST NEIGHBOR SEARCH

Set: LongSeach, Population: 53145, Disks: 5, NNs: 10, Dimensions: 2 Set Califorma, Population: 62173, Disks: 10, NNs: 1D0, Dimensions: 2

BBSS -B--

<-«-4- ' '

T-S-.,

....

:

BBSS -Q

CftSS -fc.
woPTss - *

-
:
„ . - - H ^

.,_„-—-;:;J^='" -""

::::.::

,,,,.

3 4 5 6 7
Queries per second (0.1 • 10)

Figure 7.10. Response time (sees) vs. query arrival rate (A).

Set Gaussian, Population: SOOOO, Dimensions: 5, NNs: to

CRSS
WOPTSS

'r

/

' ' \ ,

^ • ^ " ^

z:::::^::::z
,---

-

. ' • ^

--' . _ „ * - = • = - - .

: : i

Set Gaussian, Population: 50000, Dimensions: 5, NNs: 100

' BBSS E--
CRSS - * -

WOPTSS' •*—

•

/ /
/

^''''

'
.

•

x'

- ...,.

i i ; i i

Number of Disl(s{1
25 30

Figure 7.11. Response time (normalized to WOPTSS) vs. number of disks (A=5 queries/sec,
dimensions=5).

Set Uniform, Papulation: 80000, Disks: 10, Dimensions: 5 Set: Uniform, Population: 80000, Disks: 10, Dimensions: 5

BBSS-e- - - • ._
CRSS -*-- : , . - "-^"""

WOPTSS -«— ^ - - ' - ' '

/

' - - - • * "

" " • • • " • "

\

-

.- • -

-. w

BBSS -a--
CRSS - * -
>p|:SS • * - -

----.,

40 60 80 100
Nearest Neighl)ors(1 .100)

20 40
Nearest Neighbors (1 '

eo too

Figure 7.12. Response time (normalized to WOPTSS) vs. number of nearest neighbors (Left:
A=l queries/sec, Right: A=20 queries/sec).

Multidisk Query Processing 105

Population Dislcs BBSS CRSS WOPTSS

10,000

20,000

40,000

80,000

5

10

20

40

0.76

0.74

1.07

1.59

0.47

0.28

0.29

0.33

0.23

0.15

0.15

0.16

Table 7.3. Scalability with respect to population growth: Response time (sees) vs. population
and number of disks, (set: gaussian, dimensions: 5, NNs: 20, A=5 queries/sec).

/t Disks BBSS CRSS WOPTSS

10

20

40

80

5

10

20

40

2.48

2.14

2.37

2.95

1.30

0.32

0.55

0.40

0.48

0.19

0.28

0.21

Table 7.4. Scalability with respect to query size growth: Response time (sees) vs. number of
nearest neighbors and number of disks, (set: gaussian, dimensions: 5, population: 80,000, A=5
queries/sec).

3.3 Interpretation of Results
By inspecting Figures 7.8 - 7.12 and Tables 7.3 - 7.4 some very interesting

observations can be stated. As expected, WOPTSS shows the best performance
in all experiments contacted. With respect to effectiveness (see Figure 7.8-7.9),
BBSS fetches the smaller number of nodes up to a point. After this point, CRSS
is more effective, and the performance of BBSS deteriorates by increasing the
number of nearest neighbors. In order to explain this behavior of BBSS a small
example is given in Figure 7.13, assuming that k = 12. Since the algorithm
chooses to visit the MBR with the smallest MINDIST distance, MBR Ri
will be visited first. If 12 data objects lie in the subtree of i?i, all of them will
be visited, despite the fact that some of them will not contribute to the final
answer. Evidently, in the branch of R^ lie some objects that are closer to the
query point. Therefore, if i?i and i?2 were visited in a BFS (Breadth First
Search) manner, the total number of disk accesses could have been reduced

106

Ri contains 12 objects

NEAREST NEIGHBOR SEARCH

Ri contains 16 objects

Figure 7.13.
accesses.

BBSS will visit all nodes associated with the branch of i?i, leading to unnecessary

considerably. The drawback of BBSS affects its performance even more, by
increasing the number of dimensions, as shown in Figure 7.9. By increasing
the space dimensionality, the overlap of the MBRs increases also, and therefore
the pruning of branches becomes a difficult task. Moreover, several MBRs may
have zero value for the MINDIST distance, resulting in a difficulty to select
the appropriate next branch to follow. The superiority of CRSS lies in the fact
that it uses a successful combination of BFS and DPS (Depth First Search) of
the parallel R*-tree. On the other hand, BBSS is DFS-based, whereas FPSS is
BFS-based. Algorithm FPSS fails to control the number of fetched nodes and
this results in a large number of disk accesses. The good performance of CRSS
is retained in all data sets used and all examined dimensionalities.

In Figure 7.10, we illustrate the response time per query versus the query
arrival rate. FPSS is very sensitive in workload increase, since there is no control
on the number of fetched nodes. Its performance is the worst in comparison
to the other methods. However, for small workloads and large number of
disks FPSS is marginally better than CRSS. This is illustrated in Figure 7.10
(right graph). This happens because the large number of disks compensates the
increased demand for disk accesses.

Figure 7.11 demonstrates response time versus number of disks. It is evident
that the speed-up of CRSS is better than that of BBSS. In fact CRSS is between
2 to 4 times faster than BBSS. Algorithm FPSS is not considered any more,
since its performance is very sensitive on the workload and the number of disks
in the system.

The performance of the methods with respect to the number of nearest neigh
bors is illustrated in Figure 7.12. Again, it is observed that CRSS shows the
best performance, outperforming BBSS by factors (3 to 4 times faster). Finally,
Tables 7.3 and 7.4 present the scalability of the algorithms with respect to pop
ulation growth and query size growth. CRSS is more stable than BBSS and on
average is 4 times faster.

Multidisk Query Processing 107

The general conclusion derived is that CRSS is on average 2 times slovi'er
than WOPTSS and outperforms by factors both BBSS and FPSS. Thus, CRSS
succeeds in:

• fetching a small number of nodes, and

• exploiting parallelism to a sufficient degree.

For these reasons, the use of CRSS is recommended as a fast and simple sim
ilarity search algorithm in a system based on dislc arrays. Table 7.5 contains a
qualitative comparison of the studied algorithms, summarizing the performance
evaluation results.

BBSS FPSS CRSS WOPTSS

disk accesses

throughput

response time

speed-up

scalability

intraquery I/O parallelism

interquery I/O parallelism

V

V

V

V
limited

V
V
V
V
V
V
V

V
V
V
V
V
V
V

Table 7.5. Qualitative comparison of all algorithms (a ^/ means good performance).

4. Summary
The problem of exploiting I/O parallelism in database systems is a major

research direction. In this chapter, we investigated similarity search techniques
for disk arrays. The fundamental properties that such an algorithm should pre
serve are: parallelism must be exploited as much as possible, the total resource
consumption should be minimized, the response time of user queries should be
reduced as much as possible and throughput must be maximized.

Three possible similarity search techniques are presented and studied in detail
with respect to the above issues. Moreover, an optimal approach (WOPTSS)
is defined, which assumes that the distance Df. from the query point to the k-th
nearest neighbor is known in advance, and therefore only the relevant nodes are
inspected. Unfortunately, this algorithm is hypothetical, since the distance Dk
is generally not known. However, useful lower bounds are derived by studying
the behavior of the optimal method. All methods are studied under extensive

108 NEAREST NEIGHBOR SEARCH

experimentation througli simulation. The simulation process takes into consid
eration the disk model, the conflicts on the I/O bus, and CPU time. A number of
different datasets are used with various populations, distributions and dimen
sionalities. Among the studied algorithms, the proposed one (CRSS) which
is based on a careful inspection of the R*-tree nodes, and leads to an effective
candidate reduction, shows the best performance. However, the performance
difference between CRSS and WOPTSS suggests that further research is re
quired to reach the lower bound as much as possible.

5. Further Reading
The exploitation of multiple disk units for efficient query processing has

been studied in [113] in the case of B-trees. In [141] the authors study optimal
methods for data declustering, by using a closed-form formula to estimate the
performance of the methods. In [11] the authors propose an efficient technique
for parallel query processing in high-dimensional spaces. Efficient methods for
parallel query processing using M-trees have been proposed in [147].

Chapter 8

MULTIPROCESSOR QUERY PROCESSING

1. Introduction
In Chapter 6 we discussed some important issues regarding the exploitation

of multiple processors towards increased query processing efficiency. In this
chapter we continue with a performance evaluation of parallel NN algorithms
in a parallel database system, which is supported by a set of interconnected
computer systems (network of workstations). The challenge in this case is to
partition the data among the several processors to achieve good performance
during query processing. In addition, the query processor must be carefully
designed, taking into consideration that processor communication is performed
by message passing, and therefore data transfer costs are not negligible.

PRIMARY SITE

/
R3 R4

Rl 1 R2
L ^

R5 R6 R7

R.S R9

' (
RIO

SEC

RI3

OND

RI4

ARll SIT

R17

E 1

r
RIS RI9 R l l R12

S ECO NDA

^
RIS

RYS

RI6

ITE 2

Figure 8.1. Declustering an R-txee over three sites.

109

110 NEAREST NEIGHBOR SEARCH

Given that the dataset is known in advance, Koudas et. al. suggest sorting
the data with respect to the Hilbert values of the MBR centroids [58]. Then, the
tree leaf level is formed and the assignment of leaves to sites is performed in
a round-robin manner. This method guarantees that leaves that contain objects
close in the address space will be assigned to different sites, thus increasing the
parallelism during range query processing. In Figure 8.1 we present a way to
decluster an R-tree in three sites, one primary and two secondary.

Recall that although in this study we assume that the processors reside in
different computer systems, the methodology can be applied to more tightly-
coupled architectures as well, where processors reside in the same machine.

The material of this chapter is based on [92, 94] and is organized as follows.
In the next section we present some performance estimation issues which are
used throughout the chapter to predict the number of disk accesses for a fc-NN
query. Section 3 studies NN query processing algorithms, whereas Section 4
contains the performance evaluation results of the study.

2. Performance Estimation
In this section we show how we can estimate the number of leaf accesses

involved due to the processing of a k-NN query. In Chapter 4 we gave average
upper and lower bounds with respect to the number of leaf accesses for k=l NN
queries only, assuming that the query points are allowed to "land" on actual data
points only. In this chapter, we are based on a different query model, which as
sumes a uniform distribution of the query points over the whole address space.
The latter model, even if it does not reflect reality always, it has been used by
many researchers working in the access methods area [87]. Here we try to esti
mate this number as precisely as possible, using statistical information that we
assume are available. The estimation of the number of leaf accesses is based on
the following basic observation to which we have concluded after conducting
a series of experiments. The analytical derivation of a closed formed formula
to verify the validity of this observation is an issue for further research.

Basic Observation
If the query points follow a uniform distribution over the 2-d data space, then
the average number of R-tree leaf accesses involved when we process a A;-NN
query, using the branch-and-bound algorithm, grows almost linearly with re
spect to k. •

This linearity property allow us to approximate the expected number of leaf
accesses using a linear equation of the form:

F{k) = a*k + b (8.1)

Multiprocessor Query Processing 111

where k is the number of nearest neighbors, F{k) the expected number of leaf
accesses, a the curve slope and b a real positive constant. The main problem
is to calculate a and b. We can base the calculation on available statistical
information. Let us assume that we have the expected number of leaf accesses
F(fci) and F{k2) for ki and ^2 nearest neighbors, respectively, where fci 7̂ A;2.
It is evident that:

^^EMJZZM ,8.2,
«2 -k-i

and
b^F{ki)-a*ki (8.3)

Using sample values for ki and k2 we can measure the values F(ki) and F(k2).
From Equations (8.2) and (8.3) we obtain the values for a and b respectively.
Substituting in Equation (8.1) we have a formula to estimate the expected num
ber of leaf accesses. The values ki and k2 can be selected by the database
administrator or can be adjusted by the statistical module. In our framework
we used the values ki = 10 and k2 = 500.

The graphs of Figure 8.2 show the measured and estimated number of leaf
accesses versus the number k of nearest neighbors. The datasets used are
described in a subsequent section. For each graph 100 NN queries were gen
erated uniformly over the data space and the average number of leaf accesses
was calculated. It is evident that the approximation is reasonably accurate (the
maximum and mean errors are around 20% and 10% respectively) and there
fore it can be used for estimation purposes. We also studied a regression based
approximation using several sample values of k (ki, k2, ..., /:„). Although a
more accurate estimation was obtained on average, the practical impact on the
performance of the proposed algorithm was negligible.

3. Parallel Algorithms
3.1 Adapting BB-NNF in Declustered R-trees

In order to apply the BB-NNF method in a declustered R-tree, some modifica
tions need to be considered. Recall that the data pages are searched one-by-one
and consequently, each server is activated one-by-one. Because the determi
nation of the best answers is performed through successive refinement, every
time a new data page is searched, the current set of nearest neighbors is updated
accordingly. This behavior results in two alternatives to process NN queries
over a network.

BB-NNF-1
In this approach, when a new server is activated, the primary server sends
the query point together with the currently best k distances. This way,
the corresponding secondary server can determine the absolutely necessary

112 NEAREST NEIGHBOR SEARCH

Measured -B—
Estimated -M—

• ^ ^ - -

:y^ ^
y

^ ^
M îflourod
Estimatec

•

- a 1 j 1

'r^ A

0 100 200 700 BOO 900 1000

40

35

30

25

20

15

10

S

bstima'ptf * y ^ ^
y;^^

y ^

^y^

s
»
2
I

35

25

20

Mftisu'«((o
r^/tialeJ >*—

.

700 BOO 900 10OO

Figure 8.2. Measured and Estimated number of leaf accesses vs. the number k of nearest
neighbors.

number of objects to transmit back. However, for large values of k, the
network consumption can increase considerably and the benefits of this
approach may be lost.

BB-NNF-2
In this approach, only the distance to the fc-th currently best nearest neighbor
of the query point is transmitted along with the query point itself The

Multiprocessor Query Processing 113

advantage is that only few bytes are needed in order to activate a secondary
site. On the other hand, the pruning that the activated secondary site can
perform is limited, since the selection of the objects is performed with only
one reference distance. Therefore, there is high probability that among the
transmitted objects some of them are not necessary.

It is evident, that there is a trade off that need to be further investigated by
means of experimental evaluation. In this respect, we consider both variants
of BB-NNF for the comparison to be complete. The two approaches are based
on the same concept but they differ in the implementation. In the sequel, when
we mention BB-NNF we mean any of the two variants, if this does not pose
confusion in readability.

3.2 The Parallel Nearest Neighbor Finding (P-NNF)
Method

The main drawback of BB-NNF method is that due to its serial nature,
query processing is not affected by the number of secondary sites available
and therefore, no parallelism is exploited. Moreover, a particular site may be
accessed several times, each time processing a different data page. Evidently,
we would liice to have more control on the processing strategy. Also, we would
like to exploit parallelism as much as possible, thus speeding up processing. In
this subsection we present and study the P-NNF method, suitable for answering
NN queries in a declustered environment. In Figure 8.3, we illustrate the basic
difference of the two methods.

In the top of the figure, we see how the BB-NNF method proceeds with
the execution of a query. Each time a secondary server Sj is activated, the
primary server must wait until the Sj transmits all the results. Then the primary
server may proceed with the activation of another secondary server. All three
phases, namely activation phase, local processing phase and result transmission
phase, appear in a strict sequence and no parallel processing is achieved. On the
other hand, as we present in the bottom of Figure 8.3, we would like to exploit
parallelism during the local processing phase, reducing the query response time.
Generally, each secondary server neither processes the same amount of data,
nor transmits the same number of objects. The exact calculation of the response
time and the cost model description is presented in Subsection 4.2.

In the sequel, we are using the distances MINDIST, MINMAXDIST
and MAXDIST between a rectangle R and a point P, which have been de
fined in previous chapters. The distances are depicted in Figure 8.4. The main
goal of the proposed method is to determine the secondary sites that are going to
be activated simultaneously. The algorithm comprises of three different steps.
First, we start at the primary site and we search the R-tree with respect to the
MINDIST measure from the query point, until the final internal tree level

114 NEAREST NEIGHBOR SEARCH

Activation Phase
Local Processing Phase
Result Transmission Phase

BB-NNF
method

P-NNF
method

k

^ «
Site A

Site A

SiteB

SiteC

• 1 1'

^m.

^
Site B 1

•
SiteC

•

*-

Figure 8.3. Basic difference between BB-NNF and P-NNF methods.

i •<•
p

^

X

.^

X
^

Ri

MINDIST •

MINMAXDIST >

MAXDIST »•

Figure 8.4. MINDIST, MINMAXDIST and MAXDIST between a point P and two
rectangles Ri and i?2-

(the "father" level of the data pages) is reached. In the second step, a radius Dr
is determined which guarantees that all the qualifying objects (and other objects
as well) are falling inside the circle with center the query point and radius Dr.
Then, a range query is performed with respect to this circle and a set of data
pages MBRs is gathered, by inspecting the MBRs of the last internal level. In
the last step, the first F{k) data pages (with respect to the MINDIST metric)
are visited and the relevant answers are collected. To guarantee the avoidance of
dismissals, the remaining of the gathered MBRs must be checked for relevance.
Bellow we describe each step of the algorithm in detail:

Multiprocessor Query Processing 115

Algorithm P-NNF

Input: a query point P and the number k of nearest neighbors requested.

Output: a sorted sequence of distances ai, . . . , a^ of the fc nearest neighbors
of P .

Stepl
Let the k nearest neighbors be requested with respect to a query point P.
The R-tree is traversed top-down with respect to the MINDIST metric.
This means that, in each node we take the branch that corresponds to the
MBR with the minimum MINDIST with respect to the query point P.
The traversal stops at the last R-tree internal level. Also, Iceep in mind that all
upper levels are stored at the primary site, and all data pages are distributed
in the available secondary sites. In this step no data pages are visited.

Step 2
Assume that the internal node / has been reached in Step 1. Let this node
contain e = Oin{I) entries, pointing to e data pages. We sort these pages
in increasing order, with respect to the MAXDIST metric and obtain the
sorted sequence 5 i , . . . , Be- Each data page Bj contains Odp{Bj) objects,
where 1 < j < e and corresponds to a region R{Bj) that encloses all
the objects. Note that from node / at most X)j=i Odp{Bj) data objects
can be accessed. Although we will generalize later, for the time being
let k < X)j=i Odp{Bj). We determine the smallest positive integer c,
where 1 < c < e, such that the circle with center P and radius Dr =
MAXDIST{P, R{Bc) contains at least k objects. More formally:

C C—1

Y.Od,{B^)>k>Y,Odb{Bi)
3=1 i = i

A range query is performed in the R-tree, using the circle with center P and
radius Dr and a set of data page MBRs is collected. Again, in this step, no
data pages are accessed.

Step 3
Assume that M data page MBRs have been collected from the previous step.
In general, this number is greater than the number of data pages we really
need to obtain the answer. Here, we use the estimation for the expected
number of leaf accesses illustrated in the previous subsection (see

Equation (8.1)). Therefore, from the M MBRs we choose the first m=F{k)
with respect to the MINDIST metric. The appropriate secondary sites are
activated simultaneously, and the k most promising answers are collected.

116 NEAREST NEIGHBOR SEARCH

If after the collection of the answers there are still MBRs, among the M, that
may contain relevant objects, we must process them as well. Therefore, the
MINDIST of the remaining data page MBRs are compared with the fc-th
nearest neighbor of P. If for an MBR R the value of HINDIST{P, R)
is greater than the distance from P to its fc-th nearest neighbor obtained so
far, then R is rejected from consideration, since it is impossible to contain
any of the nearest neighbors of P.

In Step 2 of the algorithm, we assumed that k < Yl^i=i ^dp{Bj). In other
words, from the first father node / i we visit, we can access at least k objects.
However, it is possible that / i does not have enough occupied entries to cover
k. The number of objects that are contained in each data page is recorded in
the father node. Therefore, we know how many objects a data page contains,
before visiting the page. The solution to this problem is very simple though.
All we need is to visit another father /2, with respect to the MINDIST of the
query point, such that the sum of the objects we can access from both / i and
/2, exceeds k. Evidently, this process can be continued with more father nodes,
until the condition is satisfied.

3.3 When Statistics are not Available
In the previous subsections, we explained how the statistical information is

exploited to process a NN query. However, statistics are not always available,
and therefore there is a need to devise a modified P-NNF method to exploit
parallelism, when statistics on the expected number of data page accesses are
not available. The only difference of the new method (P-NNF-2) with P-NNF
appears in Step 3. Recall that the number F{k) (expected number of data page
accesses) is used as an estimation for the relevant data pages, during searching
for the k nearest neighbors of a query point P. However, in this case, the F{k)
value is not available, and some other starting point should be defined. Recall
that, after the completion of Step 2 of P-NNF algorithm, the M relevant MBRs
of the data pages are sorted with respect to the MINDIST distance from the
query point. We determine an integer mk such that:

^Od,iB,)>k> ^ Od,(Bj)
i= i j=i

In other words, we keep on investigating the sorted list, until the current sum of
objects exceed the number k. Note that something similar has been performed
in Step 2 to determine the Dr distance. These first mk data pages are guaranteed
to contain at least k objects, but it is too optimistic to declare that all of the best
objects will be among them. However, we hope that at least some of them will
participate in the final answer, and that the rest will not be too far away from
the query point, enabling effective pruning.

Multiprocessor Query Processing 117

After the determination of rrik, the m^ data pages are accessed, and a sorted
sequence ai, . . . , a^ of the k best matches is formulated. Then, we check the
M — rrik remaining MBRs to determine if some of them need to be accessed.
Therefore, all MBRs Mj where MINDIST{P, Mj) < a/,, should be further
investigated. For this purpose, the primary site sends the sequence ai , . . . , a^
to the relevant secondary sites, and collects the results. The primary server
determines the best k objects, and formulates the final answer set of nearest
neighbors.

3.4 Correctness of P-NNF Algorithms
One can observe that both P-NNF algorithms are correct. In other words,

the methods determine a sorted list of object distances from the query point
P, such that all k nearest neighbors of P are included. Let ai , . . . , a^ be the
sorted list of distance values. Without loss of generality, let â ^ aj, where
i ^ hj < k and i ^ j . Assume that there is an object distance a^ that is not
contained in the answer set, but for some j the following holds: a^ < aj, where
1 < J < fc- This means that we have a false dismissal,, because an object that
should be returned as one of the nearest neighbors, does not appear in the final
answer. This can happen only due to one of the following reasons:

(i) The circular range query that is performed with respect to Dr distance does
not cover all the best distances, or

(ii) A data page Bj is not visited, although MINDIST{P, R{Bj)) < a'f.,
where a'̂ . is the currently best distance from P to its fc-th nearest neighbor.

Case (i) is avoided, since Dj. is selected in a way that encloses at least k ob
jects. Case (ii) is avoided, since after the first formulation of the best distances
a\,...,a'^, the remaining candidate data pages are checiced with respect to the
MINDIST and a'̂ . Therefore, any data page that may contain answers is
accessed. Thus the following holds:

Proposition 8.1
Algorithms P-NNF-1 and P-NNF-2 are correct since they return at least k object
distances ai, . . . , a/c with respect to the query point P, and no distance smaller
than a/c is left out. •

4. Performance Evaluation
4.1 Preliminaries

We implemented the Hilbert-packed R-tree, the branch-and-bound (BB-
NNF) and the parallel nearest neighbor (P-NNF) algorithms in the C program
ming language under UNIX and simulate the parallel environment on a SUN

118 NEAREST NEIGHBOR SEARCH

Sparcstation 4. The tree fanout is set to 50 and therefore, each node contains at
most 50 entries.

The pure network speed, NSpure, is set to 10Mbps. In order to investigate
the behavior of the methods under different network loads, we make use of a
variable netload by which we divide the pure network speed and we get the
effective network speed: NS^ff = ^ ^ - Due to the CSMA/CD protocol,
many sites may try to transmit simultaneously, resulting in a collision. The net
effect of the collisions is that there is a delay in transmitting a frame from a
source to the destination. Therefore, the netload variable reflects exactly this
delay. We used the frame layout of the IEEE 802.3 CSMA/CD bus standard,
which is illustrated in Figure 8.5. Both real-life and synthetic datasets have
been used for the performance evaluation. The datasets are described in Table
8.1 and are shown graphically in Figure 8.6.

Preamble
7 bytes

Source Address
6 bytes

Desl. Address
6 bytes

Data
0 - 1500 bytes

Checksum
4 bytes

Start of frame delimiter
I byte

Data Length
2 bytes

Pad
0 - 46 bytes

Figure 8.5. The IEEE 802.3 (CSMA/CD bus) frame layout.

Dataset

lUE

MG

LB

CP

SU

ss

Population

15,100

27,000

57,000

62,000

100,000

100,000

Description

Star coordinates from International Ultraviolet Explorer (NASA)

Road segment intersections in Montgomery County (TIGER)

Road segment intersections in Long Beach County (TIGER)

Coordinates of various places in California (Sequoia 2000)

Synthetic dataset with uniform distribution

Synthetic dataset with skew distribution

Table 8.1. Description of datasets.

4.2 The Cost Model
Recall that the architecture we study here, assumes a network capable of

performing multicasting. Also, we agree that when a server wants to transmit

Multiprocessor Query Processing 119

(a) lUE

1

<f̂ '/-
"1^ 'l

t":.
*>

I '

•4

^ 't^^,
- i

i & ^ ;•

(d)CP (e)SU (OSS

Figure 8.6. Graphical representation of datasets used for experimentation.

data and the network media is available (no other server is currently using it)
then the server will send the data immediately.

In Figure 8.7 above, we present an example of how the response time of a
query can be calculated. Assume that the primary server initiates a NN query,
and that the qualifying servers are 5i , ^2 and 53. Each one of the servers
will perform some local computations and local I/O to process its portion of the
answer. Also, each one of the activated servers must transmit the results back to
the primary server. In time point A, the primary server has searched the upper
tree levels. Immediately, transmits a packet to activate the relevant servers.
In time point B, all servers have received the request, and they start the local
processing phase which includes retrieving and inspecting the corresponding
data pages. In time point C, server Si completes its local processing phase,
and since the network media is free, it starts the transmission of the results to
the primary server. Although server 53 completes its processing at time point
D, it can not transmit the data because the network media is occupied by ^ i .
Eventually, Si completes the transmission of the results and therefore ^3 may
commence the data delivery. Finally, server 52 starts the transmission at time
point G and at time point H the whole process is completed. Therefore, the
response time ranges from the beginning of processing, until time point H.

120 NEAREST NEIGHBOR SEARCH

Primary

Server

Server S\

Server Si

Server 53

'•ialer '^^

Tloal

Thcal

Thxa!

^results ^^m-.

1

Local Pi-ocessing Time

WM Result Transmission Time

j J H Server Activation Time

•̂ nau/fa

1 Fiiu^t^
t^^m

A B D B F

Figure 8.7. Calculation of the Response Time of a query.

We assume that a disk access of a page (either internal or leaf) has a cost of
Tpage=lOms. The total time Tpacket to transmit a packet that contains b bytes

• r „

equals:

-^packet AT- Q "*" "̂ setup

where NS is the network speed in bytes/second and Tgetup is the time overhead
required to prepare the packet and is set to 5ms. A similar approach has been
followed in [62, 143].

4.3 Experimental Results
We conducted several series of experiments to test our proposed method and

its behavior under different settings.

• In the first series of experiments, we compare the P-NNF and BB-NNF
methods using all datasets. In Figure 8.8 we present the response times for
the two methods using 10 secondary sites and high network speed (10Mbps).
The value of k ranges between 1 and 1000.

• In the second series of experiments, we measure the number of frames
transmitted over the network, the number of objects transmitted by each
method and the time required to search the upper R-tree levels on the primary
server. These results are illustrated in Figure 8.9 for the LB data set. Again,
the value of k ranges between 1 and 1000.

Multiprocessor Query Processing 111

Nearest Neighbors Requested Nearest Neighbors Requested

Figure 8.8. Response time (in msecs) vs. k (secondary sites=10, NS^ff = lOMbit/sec).

In the third series of experiments, we use sample values for the number k of
nearest neighbors and test the changes in the response time with respect to
the number of secondary sites (Figure 8.10) and the effective network speed
(Table 8.2). The data set used is the LB. Three values of k are used, fci=10,
fc2=100 and A;3=200. In Figure 8.10, the number of secondary servers ranges
between 1 and 30. In Table 8.2 the number of secondary servers is fixed
at 10, whereas the effective network speed ranges between lOKbit/sec to
lOMbit/sec.

122 NEAREST NEIGHBOR SEARCH

"
eo

40

20

00

80

60

40

-u

'
RH-NNF.1
BB-NNF-2

P-NNF-1
P-NNF-2

• 7

1

r
'

lt*--p-^ 1 ,

^...

!

i
1 1

,

>

.

100 200 300 40O 500 600 700 800 900
Nearest Neighbors Requesled Nearest Neigtitwrs Requested

- BU NMr-1
UT NNt- 2

PNNr 1
PNNF2

Figure 8.9. Number of transmitted frames, time to process the upper R-tree levels and number
of transmitted objects, vs. k (secondary sites=10, NSeff = 10Mbit/sec).

Since the behavior of the methods is similar for all datasets, in the second and
third series of experiments we present results for the LB set only. All results
are obtained after applying each nearest neighbor query 100 times and taking
the average.

4.4 Interpretation of Results
The first observation derived from Figure 8.8 is that P-NNF-1 method is

superior to BB-NNF-1, BB-NNF-2 and P-NNF-2 methods in a parallel envi
ronment. The response time of a NN query is decreased drastically. In some
cases, for small values of k (e.g. k < 5) the cost at the primary site may
dominate and BB-NNF may be better. However, with the use of buffering,
most of the internal tree nodes will be maintained in main memory, eliminat
ing this problem. The general observation obtained from Figure 8.8 is that the
performance gain of P-NNF over BB-NNF increases as k increases.

By inspecting Figure 8.9, we observe that P-NNF-1 transmits the smallest
number of network frames (packets). Therefore, the probability of collisions
is reduced in comparison to all other methods. However, P-NNF-1 transmits
more objects than the other approaches. This is the price we pay to exploit

Multiprocessor Query Processing 123

Set: LB, Nearest Neighbors: to, EHecbve Networtt Speed: tOMbifsec Set: LB, Nearest Neighbors: 100, Effective Network Speed: tOMbit/sec

:-\-f-
\ \

V : r^"^^
- \!

BB-NNF-1
BB-NNF-2

P-NNF-1
P-tiNF-Z ^ - -\

- BB-NNF-I
B8-NNF-2

P-NNF-1
P-NNF-2 ^

Number of Secondaiy Servers Number ot Secondary Servers

Set LB, Nearest Neighbors: 200, Effective Networl* Speed: lOMbit/sec

: BB-Nf^F-1; - B -
: BB-NNF-2 -*«-

P-r*JF-1! -»—
P-NNF-2 - • -

Number ot Secondary Servers

Figure 8.10. Response time (in msecs) vs. number of secondary servers.

parallelism. At the bottom of Figure 8.9 we observe that BB-NNF-2 transmits
the smallest number of objects, since each time a new data page is accessed and
a server is activated, the currently best k distances are transmitted as well.

With respect to the overhead to search the upper R-tree levels, that are stored
on the primary server, we can state that BB-NNF methods process fewer number
of nodes than P-NNF. The increased number of nodes processed in P-NNF
methods is due to the circular range query applied. Since the primary site
stores only the upper R-tree levels, these could be maintained in main memory
and therefore the processing cost would be very small.

In the P-NNF method, as the number of secondary sites increases, the re
sponse time decreases. However, the degree of parallehsm is a function of
the values of k and the number of secondary sites. On the other hand, the re
sponse time in BB-NNF-1,2 methods remains constant since the method does
not exploit any parallelism. These remarks are illustrated in Figure 8.10.

The network load has a very strong impact on the performance of both meth
ods as shown in Table 8.2. In fact, under high network loads, the gain of P-NNF
over BB-NNF decreases. This is an expected outcome, since the network usage
time outperforms by factors the local processing time at each site and therefore,
the benefits of parallel processing are no more existent. However, since fiber

124 NEAREST NEIGHBOR SEARCH

NSeff in Kbit/sec BB-NNF-1 BB-NNF-2 P-NNF-1 P-NNF-2

Nearest Neighbors: 10

10000
1000
200
100
10

10000
1000
200
100
10

91.35
95.43
112.60
137.38
593.15

Nearest

175.97
199.58
273.97
404.69
2597.12

91.37
95.64
113.53
139.30
612.36

Neighbors: 100

178.43
224.90
387.72
649.52
5103.60

67.25
72.96
88.95
100.00
443.92

82.94
100.69
179.02
297.99
2427.55

84,27
90.10
104.54

118.93
514.47

108.33
130.31
220.18
373.64
3043.70

Nearest Neighbors: 200

10000
1000
200
100
10

226.63
273.55
410.21

584.58
3978.71

234.12
353.18
792.25

1355.55
11974

80.56
107.70
239.47

408.39
3578.12

110.31
145.04
314.64
543.78
4398.77

Table 8.2. Response Time vs. network speed (Secondary sites=10, NN requested = 10, 100
and 200).

optics technology is becoming more and more available, reaching speeds of
1000Mbps, the use of P-NNF is recommended.

5. Summary
In this chapter, we study the performance of NN queries in multidisk multi

processor architectures. We assume that data objects are stored in an R-tree and
the whole structure is distributed over a number of servers, each with a single
processor and a single disk attached. The basic motivation behind this work
is the fact that the branch-and-bound algorithm of Roussopoulos et. al. [106]
is strictly serial and therefore, cannot be applied directly in a parallel environ
ment. We use statistical information to estimate the number of leaf accesses
introduced due to the processing of a A;-NN query and we use this estimation,
in order to provide an efficient execution strategy. As long as the number of
objects inserted or deleted is small, the statistical information need not be up
dated. The renewal of statistical data would be necessary after a large number
of insertions/deletions.

Multiprocessor Query Processing 125

Moreover, we present a modified algorithm to process NN queries in parallel,
when statistical data are not available. Experimental results based on real-life
and synthetic datasets show that the proposed P-NNF algorithms outperform
the BB-NNF algorithms by factors. The efficiency measure is the query re
sponse time, which contains communication cost and local processing cost at
each server. We test our method for light-loaded and heavy-loaded networks,
different number of servers, different data populations and distributions and we
observe that the response time is decreased drastically.

With respect to the generalization to higher dimensional spaces, the basic
linearity observation stated in Subsection 8.2, may no longer hold, due to in
creased overlap between node MBRs. In this case, we need to estimate the
number of data page accesses either using higher-order regression models, or
accurate closed formed formulae.

Although we focused on packed R-trees, the method can equally well be
applied in dynamic environments. In such an environment, packed R-trees are
not recommended because the structure characteristics change rapidly due to
insertions and deletions of data. Instead, another variant should be used (e.g.
R*-tree [7], dynamic Hilbert R-tree [29]), that is better equipped to handle the
dynamic behavior.

6. Further Reading
Other approaches for parallel query processing by using spatial access meth

ods have been studied in [41], where the authors study data-parallel algorithms
for spatial operations using data-parallel variants of the bucket PMR quadtree,
R-tree, and R"*" -tree. The algorithms are implemented using the scan model of
parallel computation on a hypercube architecture.

Efficient algorithms for parallel intersection spatial join processing have been
proposed in [17], whereas in [6, 116] efficient techniques have been reported
for parallel similarity join processing.

Declustering and load-balancing for non-point objects are studied in [118],
where the authors study several critical issues for parallelizing Geographical
Information Systems. An important issue that is covered in this work, is the
declustering of complex non-point objects.

Chapter 9

DISTRIBUTED QUERY PROCESSING

1. Introduction
In Chapter 8 we have focused on a parallel architecture composed of a net

work of workstations, where data are declustered amongst the available proces
sors. In this chapter, we study NN query processing in a distributed database
system. More specifically, we make no assumptions about the data declustering
method, since each database is considered autonomous. However, we assume
that each autonomous database is capable of answering NN queries in its local
data, although different databases could exploit different algorithms and access
methods.

Since no particular declustering scheme can be assumed, the algorithms
studied in the pervious chapters can not be applied in this case. The system is
composed of a primary server that operates as a coordinator for the m source
databases. All systems are communicating via a network configuration (Figure
9.1).

Primary Server

Figure 9.1. The abstract system architecture.

127

128 NEAREST NEIGHBOR SEARCH

The primary server may be a data warehouse or simply a system that is re
sponsible for controlling and supervising the source databases. We assume that
query requests are initiated by a user's system and then submitted to the pri
mary server for evaluation. Also, the query results are gathered from the source
databases to the primary server and then are shipped back to the appropriate
user's system. Despite the fact that we perform a distinction between primary
and secondary sites, any secondary site could take responsibility of evaluating
user queries. Each source database has complete control over the objects that
it stores. Therefore, different access methods and optimization techniques may
be utilized by the different databases.

Definition 9.1
Given a A;-NN query Q, the response time for Q is defined as the time elapsed
from query submission to query completion. n

The challenge is to determine an efficient method for NN query processing
in a distributed system. Moreover, the number of parameters is quite large and
in some cases trade-offs occur (e.g., the degree of parallelism vs. the number of
transmitted objects). The problem we are going to deal with in the remainder
of the chapter is stated as follows:

Problem Statement
Given a distributed multidimensional database and a fc-NN query Qk, find an
efficient evaluation strategy, to minimize the response time of Qk and to con
sume as few overall system resources as possible. •

In order to approach the problem from a theoretical point of view, several
simplifying assumptions should be introduced, resulting in a more feasible and
tractable analysis. The basic assumptions introduced are summarized below:

1 Although we do not require the source databases to be homogeneous, we
will assume that the cost to answer a given query is the same, for all source
databases.

2 We assume that the similarity metric between two multidimensional vec
tors is the Euclidean distance {L2 metric), and every database respects this
similarity measure.

3 The data are partitioned to the source databases in such a way that no repli
cation exists. In other words, each object is stored in only one database.

4 If during processing we must retrieve L disk pages from a source database,
the required time is L • Tp, where Tp is the expected page access time [1].

Distributed Query Processing 129

The material of this chapter is based on [96] and is organized as follows.
Section 2 studies different query processing strategies, whereas Section 3 dis
cusses briefly the impact of derived data. Section 4 contains the performance
evaluation which demonstrates the performance of the methods under differ
ent parameter values. Section 5 discusses several important issues, whereas
Section 6 concludes.

2. Query Evaluation Strategies
2.1 Algorithms

Let a A;-NN query, Qk, be submitted for evaluation to the primary server.
Our first approach is to examine the query evaluation when no derived data
are available. In a following section, we discuss what kind of derived data are
necessary to improve the efficiency in similarity query processing. We could
define two extreme strategies to answer the query:

Concurrent Processing - CP: Submit the query to all m source databases
and collect k objects from each one. Among the m • A; objects, select the
best k (those that are closer to the query object).

Selective Processing - SP: First activate one source database. Collect the
best k answers. Send only the distances of these k objects to the next source
database and collect another I objects, where 0 < I < k. Continue until all
source databases are visited and the best matches have been determined.

We note that the first method tries to maximize parallelism but retrieves too
many objects (m • k), whereas the second method, performs a more refined
search, but no parallelism is exploited. Therefore, we define the next method,
which is a combination of the two previous ones:

Two-Phase Processing - 2PP: First visit / source databases and collect / • k
objects. Then, select the best k and send the k distances to the rest m — f
source databases. Finally, collect the answers and determine the final set of
nearest neighbors.

Finally, we define a last method that performs an optimistic search, pretend
ing that each source database will contribute with almost the same number of
objects.

Probabilistic Processing - PRP: First request k/m + 1 objects from each
source database. Then, formulate the current set of best matches, and if
there are sources that are still relevant, visit them again and collect the final
set of objects.

By requesting k/m + 1 objects from each database, we can reject a database
if the {k/m + l)-th distance from the query point is larger than the best fc-th
distance determined so far.

130 NEAREST NEIGHBOR SEARCH

2.2 Theoretical Study
We proceed with some theoretical investigation, regarding the efficiency of

the four query evaluation strategies. The results will give some insight with
respect to the efficiency of each approach under different settings.

Symbol Description Value

m

N

Nj

d

s„
So

5„

Dp

^header

Dpmax

Tp

k

Cj

NCj

Rj{k)

NS

f

number of source databases

total number of objects

number of objects in j - th source database

dimensionality of the vector space

size of a number in bytes

average size of an object in bytes

size of a d-dimensional vector in bytes

size of a disk page in bytes

size of a network packet header in bytes

size of a network packet in bytes (without header)

page read time in seconds

number of nearest neighbors requested

contribution of j - th source database

net contribution of the j - th source database

query response time (in seconds) for strategy j

network speed in bytes per second

visited databases in step 1 of 2PP algorithm

5 -30

100,000 - 10,000,000

N/m

2 - 2 0

4

100 - 100,000

d • Sn

4K

24

1500

0.01

1-500

100,000 - 1,000,000

1

Table 9.1. Symbols, definitions and corresponding values.

Table 9.1 presents the basic symbols and the corresponding definitions that
are extensively used throughout this chapter. With Rj (k) we denote the average
query response time in seconds, for strategy j to answer a A;-NN query. The
total processing cost comprises of three basic parts: CPU cost, I/O cost and
communication cost. We expect that CPU cost will have a small impact on the
performance comparison of the strategies and therefore, it is excluded from our
theoretical study. However, CPU cost is included in our experimental study

Distributed Query Processing 131

presented in a subsequent section.

Definition 9.2
We call contribution Cj of the j-th source database, the number of objects
processed and transmitted during the evaluation of a k-NN query. Obviously,
Cj < k for all j , where 1 < j < m and X;jLi Cj > k. D

Definition 9.3
We call net contribution NCj of the j-th source database, the number of ob
jects from the j-th database that participate in the answer set of a fc-NN query.
Obviously, 0 < NCj < k, for all j , where 1 < j < m and Yl]Li NCj = fc. •

Note that the contribution of a source database depends on the visiting se
quence. Evidently, the net contribution of a source database is independent of
the visiting sequence and depends on the data placement and the query point
location. Under the uniformity and independence assumption, we expect that
the net contribution of each database equals k/m.

Definition 9.4
The local processing cost of a source database to process a fc-NN query is
defined as:

Costdb = (lNA{k) + 1^ . fcV Tp (9.1)

where INA{k) refer to the number of index node accesses for k nearest neigh
bors, which depends on the database population, the space dimensionality and
the data structure used to store and manipulate the objects, Tp is the page read
time. So is the average number of bytes per database object, Sp is the number
of bytes per disk page and O is the number of objects that are accessed. We
note that the first part of the above equation is due to the index search, whereas
the second one is due to the access of the object detailed descriptions. •

Here we describe the derivation for the local processing cost in a source
database. This cost is composed of two components: (i) the cost to search the
index and (ii) the cost to access the objects. From [29] the average number
of R-tree node accesses (INA) for a window query is given by the following
equation:

j=0 ^eff i=\
w^w = E5£j-nU.+ %^) I »2)

132 NEAREST NEIGHBOR SEARCH

where N is the number of objects, h is the tree height, d is the dataspace
dimensionaUty, C^ff is the average node capacity, and ĝ is the window size in
each dimension. The space is normalized to the unit hypercube.

In order to exploit the previous formula, we assume that the objects are
uniformly distributed in the address space. Under this assumption, if k denotes
the number of objects contained in a query volume Vol{Q), the following holds:

Vol{Q) k

Vol{Space) N

Therefore, if the query volume corresponds to a hyper-rectangle, the window
size Qs equals:

Substituting the value of QS in Equation (9.2), we obtain a formula to estimate
the expected number of node accesses during the execution of a NN query
asking for the k nearest neighbors.

h-l ^ d

j=0 ^eff i = l

On the number of index node accesses we have to add the number of additional
pages that need to be retrieved to fetch the objects from the disk. To read k
objects each having a size of So bytes each, we need to read | ^ • k disk pages.
Since each access costs Tp seconds, the total local processing cost of answering
a NN query in a source database equals:

Costiocai - (lNA{k) + ^.kYTp (9.3)

We would like to note that the above cost model does not include buffer
management or boundary effects due to high dimensionality. In these cases,
other models could have been used instead. However, we used Equation (9.2)
because of its simplicity, and because it can be used to model non-uniform
distributions [29].

Definition 9.5
The cost for transmitting B bytes using the communications network is defined
as follows:

Costtrans{B) = —- • (B + Sheader] (9.4)

Distributed Query Processing 133

where NS is the network speed in bytes per second, Spmax is the maximum
capacity of a network packet, and S^eader is the packet header size in bytes. •

Based on the assumptions and the definitions given, let us proceed with
a comparative study among the four methods described in the previous para
graphs. For each strategy, an estimation of the query response time is presented,
giving an indication of the query processing performance. In the sequel, we
denote with Costact the cost to activate a database, with Costdb the processing
cost in each database, and with Costresuit the cost to collect the results from
a database. We assume that the network does not support multicasting. In a
different case, the derived costs will be slightly different.

Concurrent Processing
A message comprising of the query vector and the number k of nearest neighbors
requested is submitted from the primary server to all source databases, one at a
time. This costs:

Costact = Costtransi^v + ^n)

Since all source databases receive the query request almost at the same time,
the local processing cost equals:

Costdb = (lNA{k) + 1^ • ^) • ^P

Finally, the primary server must collect k objects from each source database.
Therefore:

Costresuit = Costtrans{k ' {Sn + So))

Summing up all costs we get:

Rcp{k) = m • Costact + Costdb + m • Costresuit (9.5)

Selective Processing
All source databases are activated by sending the query vector and the number
k of nearest neighbors requested. This costs:

Costact =^ COSttrans\^v + ^n)

For each subsequent source database (except the first one) the primary server
must transfer the current k best distances:

Costact2 — Costtrans{k • Sn)

134 NEAREST NEIGHBOR SEARCH

because we must send the k distances of the best objects obtained so far. Let
each source database j process Cj objects. Then, the local processing cost
equals:

So
Costdb = \INA{k) + ^.Cj]-Tp

The transmission of Cj objects from source database j to the primary server
costs:

Costresult — CosttransiiSo + ^n) • Cj)

Summing up all costs we get:

m m

Fisp{k) = m • Costact + (TO - 1) • Costact2 + ^ Costdb + ^2 ^O^^result

(9.6)

Two-Phase Processing
First, the / source databases are activated by sending the query vector and the
number k of nearest neighbors requested. This costs:

Costact — Costtrans\Sy + bn)

Each of the / source databases will process k objects in parallel, costing:

Costdbi = (lNA{k) + ^-k\-Tp

The transfer of k objects from each of the / source databases costs:

Costresultl — Costtrans{k • (So + 5 '„))

The activation of the rest m — f source databases requires the transfer of the
current best k distances plus the query vector:

Costact2 — Costtrans(k • Sn)

The m — f source databases process C objects each. Therefore, the local
processing cost is:

Costdb2 = (iNAik) + ^.cyTp

The primary server must collect C objects from each source database (among
the m — f ones) and therefore:

Costresultl = Costtrans{C • [SQ + Sn))

Distributed Query Processing 135

In conclusion, the total cost for this strategy is given by:

R2Pp{k) = m • Cost act + Costdbl + f • Costresultl +

+ {fn- f) • Costact2 + Costdb2 +

+ (w - /) • C0Stresult2 (9.7)

Probabilistic Processing
A message comprising of the query vector and the number k/m + 1 of nearest
neighbors requested is submitted from the primary server to all source databases.
This costs:

Cost act = C OSttrans\Sv + 5'„)

Since all source databases receive the query request almost at the same time,
the local processing cost equals:

Costdb = (lNA{k/m + 1) + 1^ • (k/m + 1)^ • Tp

Subsequently, the primary server must collect k/m+1 objects from each source
database. Therefore:

Costresult = Costtrans{{k/m + 1) • {Sn + So))

In the best case of PRP (PRPfeest) no further processing is required. However,
in a typical case (PRPa^p) let m' be the number of reactivated databases, where
each one contributes with Cj objects. The reactivation cost per database equals
the transmission cost of the best k distances determined so far:

C0Stact2 = Costtrans{k • Sn)

Each of the reactivated databases will perform further processing to determine
the best k matches. Therefore, the cost per database equals:

Costdb2 = (lNA{k) + J- • Cj) • Tp

Finally, each reactivated database will transmit Cj objects, with cost:

Costreault2 — Costtrans{{So + Sn) ' Cj)

Summing up we obtain:

RpRp{k) = m • Costact + Costdb + m • Costresult +

+ m ' • Costact2 + Costdb2 + ™' " CostresuH2 (9.8)

It is evident that the performance of CP is quite predictable, since each source
database processes and transmits exactly k objects. However, to predict the per
formance of SP and 2PP, further analysis is required. We need the following

136 NEAREST NEIGHBOR SEARCH

lemmas to proceed.

Lemma 9.1
Assume that NCj = ^ for all 1 < j < m. Then the following holds:

1 The first accessed database that will process and transmit k objects.

2 The n-th database (where n < m) that we access, will process and transmit
k — n • ~ objects in the worst case and ^ objects in the best case.

3 The last (m-th) visited database will process and transmit exactly — objects.

Proof
We examine each case separately:

1 This is straightforward, since no precomputed distances exist before the
access of the first source database.

2 We know that the net contribution of the j-th source database is NCj =
k/m. This means that k/m is the minimum number of objects that each
source database will process and transmit. To prove the upper bound, let us
assume that the currently accessed database, transmits I > {k — {n—l)-^)
objects. This means that we have found I — (k — (n — 1) • —) objects in
this database that are closer to the query point than some objects among the
(n — 1) • k/m. Moreover, this fact implies that the net contribution of one or
more databases that were accessed previously is not k/m but lower, which
contradicts our assumption that the net contribution of each source database
is k/m. Therefore, the upper bound in the number of transmitted objects
for the n-th accessed database is fc — (n — 1) • ^ .

3 This is a special case of 2 above by setting n = m. •

Lemma 9.2
The average number of objects processed and transmitted by a source database
for a A;-NN query by SP is:

yr— /m2 + 5 m - 2 \ ,
^̂ ^ = [-^^^) • ^

Proof
According to Lemma 9.1, the n-th visited database source database will process
and transmit k/m objects at best and A; — (n — 1) • ^ object at worst. Therefore,
on average we expect that {k — {n — 2) • •^)/2 objects will be processed and
transmitted. Taking into consideration all source databases, we have that the
average number of processed objects per source database equals:

-=;— k 1 x-^ k • m — (n — 2) • k -^— m? + 5m, — 2 ,
OsP = - + --y] ^ ^— => Osp = — 2 k

m. m ^-^ Im 4m^
n=2

Distributed Query Processing 137

D

Lemma 9.3
The average number of objects processed and transmitted by a source database
for a fc-NN query by 2PP is:

Proof
Each of the / first accessed source databases will process k objects, resulting
in a total of f • k objects. The rest m — f databases will process at least k/m
objects and at most k — f • — objects and on average (A; — (/ — 1) • ^) / 2
objects. Taking all source databases into consideration we get:

m

D

Evidently, if each database contributes exactly k/m objects, the PRP method
needs only one phase, since no database will be reactivated. However, in a
more typical case, some of the databases will be reactivated and further objects
will be processed and transmitted. In such a case, the expected number of ob
jects that each reactivated database will process is given by the following lemma.

Lemma 9.4
The average number of objects processed and transmitted by a source database
for a fc-NN query by the second step of PRP is:

k • {m — 1) — m
OpRP =

Proof
In the first step, each database has transmitted k/m + 1 objects. Therefore, at
least k/m, + 1 best matches have been determined. In the second step, each
database will transmit at least 0 and at most k - {k/m + 1) objects. Therefore,
the average number of objects equals — ^ ^ '-. •

According to the above lemmas, the average execution time for each evaluation
strategy is given by the following formulae:

138 NEAREST NEIGHBOR SEARCH

Rcp(k) = m • CosttransiSv + 5„) + \INA{k) + ^.k\-Tp +

+ m • Costtrans{k • {S^ + So)) (9.9)

Rspik) = m-Costtrans{Sy + Sn) + {m-l)'Costtrans{k-Sn) +

+ m • (lNA{k) + ^ • 0 ^ \ • Tp +

+ m-C0Sttrans{{So + Sn)-'0^) (9.10)

R2pp{k) = m • CosttransiSv + 5„) + 2 • (lNA{k) + ^ • O^j • Tp +

+ m-C0Sttrana{02PP- {So + Sn)) +

+ {m-f)-C0Sttrans{k-Sr,) (9.11)

RpRp{k) - m-CosttransiSy +Sn) +

So
+ llNA{k/m+l) + y-{k/m+l)\-Tj

+ m • Costtrans{{k/m + 1) • (5„ + So)) +

+ (m/2) • Costtrans{Sn • k) +

+ (iNAik) + ^ • Opnp] • Tp

+ (m /2) • Costtrans{OpRP • {So + S'„)) (9.12)

The scenario assumed in the above analysis (scenario A) is that the detailed
object description is transmitted in addition to the distance from the query point.
This is useful when the user requires the first answers to be available as quickly
as possible, even if they do not correspond to the real nearest neighbors. As
long as the size of each object is small (e.g., 100 bytes), there is relatively little
overhead for processing and transmitting this extra information. On the other
hand, for larger object sizes and large numbers of requested neighbors, this cost
becomes very significant and may dominate with respect to the total response
time. Therefore, another scenario (scenario B) that could be followed, is to
first determine the object IDs and the distances to the query point, and then
to reactivate the relevant databases to fetch the detailed description of only
the best matches. Evidently, the cost for this last action is the same for every
strategy. We do not present the equations for the second scenario, since are
simpler versions of Equations (9.9) to (9.12). However, in the analytical and
experimental evaluation we demonstrate both cases.

Distributed Query Processing 139

Equations (9.9) to (9.12) give tlie expected execution time for eacli strategy
when the system is lightly loaded, and therefore the waiting time is negligible.
The behavior of the methods under a system load is studied using an experi
mental evaluation (see Section 5).

2.3 Analytical Comparison
Summarizing the theoretical analysis, in this subsection we present a com

parative study regarding the efficiency of the four strategies. We present some
results, with respect to the formulae of the previous subsection, to study the
behavior of the methods under different parameter values. The parameters
modified and the corresponding values are summarized in Table 9.1. We note
that these results correspond to the execution of a single query, which means
that the impact of concurrent users is not taken into account.

In Figure 9.2 the four query evaluation methods are compared, based on the
analytic results. This figure includes the results for the case where the object
detailed descriptions are processed and transmitted. Evidently, the PRPtest
method outperforms by factors the other candidates. The response time of all
methods is increased by increasing the number of nearest neighbors (see Figure
9.2(a)). CP is most affected by this increase, since every database processes and
transmits k objects. Although SP transmits the smaller number of objects, the
price paid is that no parallelism is exploited, and the response time is increased.

By increasing the number of dimensions, the processing cost in each database
increases also. For large space dimensionalities (e.g., above 20) the cost to
search the index becomes significant. In Figure 9.2(b) it is observed that meth
ods 2PP and PRPai,g tend to converge, and the same is observed for the methods
CP and PRPfcesf. For smaller dimensionalities (e.g. < 10) the PRP methods
show clearly the best performance.

The impact of the effective network speed on the performance of the methods
is illustrated in Figure 9.2(c). For small effective network speed (large network
traffic), the CP shows the worst performance, since it transmits more objects
than the other methods, and therefore the network becomes the bottleneck.

140 NEAREST NEIGHBOR SEARCH

0.25

0.125

0.0625

0.03125

*?„"
SP • « -

2PP -*^-

-avg - * ^

\g^

•;:>'',

,

].«:;:•

. - ^
: ^

1

X--'

. - • " " ' . j f T

• X ^
^ ' ' ' ^ •^ • " ' ' ' ^

-1

• • • • , < ^ - -

=̂

1

(a) N=l million, m=10, S„=1000, d=2,

N'S=lMflyte/sec.

^

-

' ' '

vs^...:::::

Z§ .̂i
H>5:-

; : :
; i ;

i : : : : ^

—«-.

p
p

i r
^ ^

;

- -

•

CP B - :
SP -«••

ZPP-* - - "•
PRP-besl - * - ;
PRP-avg -»— :

_;J,..
, , : 7 = ~ ' — - ^ ^ ^ ^ ^

" -.^^^^

/y

=*r

'
. . . , . ' ? ' • ' ' '

^y^

-Jt

-

Number ot DimenEfons (D)

(b) N=\ million, m=10, 5o=1000, fc=30,

;V5=lMByte/sec.

B 16 32 64 12S 256 512 1024
Network Speed (Kbytes/sec) (NS)

Nufrtief of Databases (m)

(c) N=\ million, m=10, S„=1000, fc = 30, d=10.
(d) Ar=l million, fc=30, 5„=1000, d=10,

A''S=lMByte/sec.

• PF
P

SR H -
2PP ^ -

P-be5(-«(—
iP-avg -*—

'
; „-

.X-;'"

' u

• • • •

;
:

A"

.̂ -—
^:4-^ —

_..-,4—
1-Q •

"

-
•a

' • • • « : J : . : . .

' T - - -

::::,::::';..::

...̂ .4..,.̂ ,,-.-.

• . _ - - - + —

15::
^ ^ . .

"'; ^ : :^
^ - ^ SP • « -

^ - ' - ' ^ : 2PP! - * - -
1 RP-best - » - -
PRP-avg -0—

(e) Tn=10, fc=50, 5^=1000, d=10, ;VS=lMbyte/sec. (f) N=\ mUUon, fc=50, m=10, d=10, AfS=lMByte/sec.

Figure 9.2. Performance of methods for scenario A (logarithmic scales).

Distributed Query Processing 141

0.5

0.25

0.125

.0623

03125

'
. . . . : . cP

SP
2PP

RRP-besI
PRP-flvy

;

^^^ _̂̂ ;̂ Ĵ̂

.̂ •.-—U

,

1

;

̂
,

, . - • " • •

. ^ • -

^ i ^

x '

'•̂

j

(a) N=l million, m=10, S'„=1000, d=2,

JV5=lMByte/sec.

— —-

^ ^ ^

.......

-,_,

'-

CP
SP

' 2PP
PRP-bes
PRP-av!

^^...X^:^...^U::,^

-— ^

7
r

—

........

------4

—:

(c) Af=l million, m=10, 5„=1000, fc = 30, d=W.

64

16

CP D-
SP-K.--

2PP -*• -
PRP-best - * -
PRP-avg -*—

0.25 - > : : ^

0.0625' •^'•^^^^^__,^,-^-<'

..-••''' Z^

•0/..

' ..-X

0 ; •
^y^- ;

,
Number ot Dimensions (D)

(b) N=l million, m=10, 5o=1000, fc=30,

NS=lMBytelsec.

12

6

4

?K3'=t;

. .^^, , , i ' :

:

.-"'

• » — - „ . _ _̂

"̂ "~-; ^ - I
o ID « DH 128 256 512 1024

Network Speed (Kbylea/sec) (MS)

(d) A^=l million, fc=30, ̂ o l̂OOO, d=lO,

W5=lMByte/sec.

64

32

16

4

2

D.S

0,25

PF

y

^

SP - « -

P-best - * -

/^

• 2^

/^:X.

»
:

,-::;4r̂
•y- -

\

U™:

• B

•X

: . • *

(e) m=10, fc=50, 5„=1000, d=10, ArS'=lMbyte/sec.

Figure 9.3. Performance of methods for scenario B (logarithmic scales).

142 NEAREST NEIGHBOR SEARCH

An interesting observation (see Figure 9.2(d)) is that the performance of SP
is affected in a negative manner by increasing the number of databases, whereas
the response time of the other methods is reduced. The cause for this behavior
is that SP does not exploit intraquery parallelism.

The increase in the number of objects is depicted in Figure 9.2(e). Evidently,
all methods are affected significantly. Finally, in Figure 9.2(f), the response time
with respect to the object size is illustrated. The impact on object size growth
is stronger for CP, since it processes and transmits more objects than the other
methods.

In Figure 9.3 we illustrate the performance of the methods for the case where
the detailed object description is not transmitted. It is observed that the results
are not modified drastically with respect to the results in Figure 9.2.

The results presented in Figures 9.2 and 9.3 correspond to a single user
system, with no other interference. In a general case however, many users
are posing queries to the database, resulting in network traffic and competition
for the CPU in each database. For example, although the SP method does
not support intraquery parallelism, supports interquery parallelism, because it
is possible to access all m databases for m different queries. On the other
hand, we expect a large performance degradation for CP method, since for
large number of concurrent users queues will grow larger in disks, CPU and the
network. In the next section we examine the impact of concurrent users, giving
experimental results on a real implementation of the query evaluation strategies
over a network of workstations.

3. The Impact of Derived Data
In the previous section, we discussed evaluation strategies assuming that

no derived data are available in the primary server. Therefore, all ra source
databases need to be visited to determine the best k matches to a given query
object. However, in real applications, the presence of derived data is very im
portant to avoid searching large dataspace portions without a chance to retrieve
relevant objects. Moreover, we may avoid visiting a particular source database,
if we are absolutely sure that no relevant objects can be found, reducing net
work contention and saving overall system resources. Several types of derived
data can be useful, ranging from simple numerical values (e.g., the number of
objects in the database) to more sophisticated ones and difficult to obtain (e.g.,
an exact description of the object distribution). We focus on derived data infor
mation that represent Minimum Bounding Boxes (MBB) of a set of objects. In
other words, some descriptors are used to group objects in sets, e.g., two MBBs
enclosing two different sets of objects.

In order to be able to discard quickly data space portions not related to the
answer set, we require the presence of a set of MBBs stored in the primary server.
For each source database j , the primary server maintains a number of MBBs.

Distributed Query Processing 143

The smaller the overlap of these MBBs the better the discrimination during
query processing. Also, a large number of MBBs helps the discrimination
process.

To illustrate the use of MBBs for discrimination among objects, we present
a few examples in Figure 9.4. In Figure 9.4(a) two MBBs are shown, each
holding five points in the 2-d space. Assume that the three nearest neighbors
with respect to point P are required. Let the circle enclose the best matches
determined so far, namely, the points 1, 2 and 3 of MBBl. Then we can safely
avoid the search in MBB2, since there is no intersection with the circle.

MBB2

• 4

• 2

MBB1

• 1

• 3

'•
(a)

MBB2
(b)

MBBl

1 P

'MSSS

(c)

Figure 9.4. (a) Use of two MBBs for discrimination, (b) The nearest neiglibor of P is not in
MBBl, (c) A query point P enclosed by many MBBs.

Consider now a query point and a number of MBBs. The question posed
is which MBB are we going to visit first and how can we safely prune any
dataspace portions that are not promising. The order that we access the MBBs
(and consequently the source databases), has a major impact on the efficiency
of a query processing strategy, since it is highly correlated to the number of
transmitted objects. The following lemma (which is easily generalized for an
arbitrary number of source databases) shows why a "good" visiting order of the
source databases is necessary and also explains what "good" means.

Lemma 9.5
Assume we have only two source databases SDB\ and SDB2 with net con
tributions NCi and NC2 respectively, for a specific /c—NN query. Assume
further, without loss of generality, that NCi < NC2. Then, the sum of contri
butions, C1+C2, is maximized if the source databases are accessed in increasing
net contribution order (i.e. SDBi first and SDB2 second), and is minimized

144 NEAREST NEIGHBOR SEARCH

if they are accessed in decreasing net contribution order (i.e. SDB2 first and
SDB\ second).

Proof
Consider that we first visit SDBi and then SDB^. The first database will
contribute k objects and the second NC2 = k — NCi objects (according to
Lemma 9.1). This results in a total of & + NC2 objects. Now, assume that we
first access SDB2 which will process k objects, and then SDBi which will
process NCi = k — NC2 objects. The total number of objects is A; + NCi.
Evidently, k + NCi < k + NC2 and this completes the proof. n

An approach used in [106] is to visit the MBBs according to the MINDIST
distance. The MINDIST{P, R) distance is defined as the minimum distance
between a query point P and an MBB R. Therefore, a sorted list of MBBs
with respect to the query point is formulated and then we investigate each
MBB, following the order. There are two main drawbacks with this approach,
illustrated in Figure 9.4:

1 The fact that the query point P is closer to MBB R does not provide any
guarantee that also the nearest neighbor(s) of P will be found in R (Figure
9.4(b)).

2 By definition, if a query point P falls inside an MBB R, then it hold that
MINDIST{P, R) = 0. Therefore, in the case where P falls inside many
MBBs R\,...,Rn, we are forced to select an MBB randomly, or apply
another heuristic in order to resolve ties (Figure 9.4(c)).

Despite the above drawbacks of the MINDIST approach, the method is
simple and easily implemented. In a separate section we discuss further im
provement that requires additional information. In the following lines, the
query evaluation strategies are presented taking into account the derived data
information.

CP
1. Determine the relevant source databases from derived data.
2. Send the query to the relevant databases.
3. Collect all answers.
4. Determine the best k matches.

SP
1. Determine the relevant source databases from derived data.
2. Using the MINDIST metric, find the best source database to access.
3. Send the currently best distances to the database.
4. Collect answers.

Distributed Query Processing 145

5. Discard any source databases that do not require access.
6. If there is no database to access then STOP else GOTO 2.

2PP
1. Determine the relevant source databases from derived data.
2. Using the MINDIST metric, find the best f databases to access.
3. Collect answers from the / databases.
4. Determine the currently best distances.
5. Discard any source databases that do not require access.
6. If there is no database to access then STOP.
7. Assume that s databases require access currently.
8. Access the s databases and collect the new answers.
9. Determine the best k matches.

PRP
1. Determine the relevant source databases from derived data.
2. Send the query to the r relevant databases, and collect k/r + 1 objects from
each one.
3. Determine the current set of nearest neighbors.
4. Reactivate some of the databases if needed.
5. Determine the best k matches.

In all methods, we need first to determine the relevant source databases, and
to discard any databases that is impossible to contribute to the answer set. This
is performed by means of the MAXDIST metric. The MAXDIST between
a point and an MBB is defined as the distance from the point to the furthest
MBB vertex. The following lemma explains:

Lemma 9.6
Assume we have a set Mj of MBBs for each source database j . Let M " denote
the number of objects that the MBB Mji encloses. For simplicity let M^^ be
equal for all j and i. We denote by R the distance between the query point P
and the \k/MJ^ -th MBB with respect to the MAXDIST metric, where k is
the number of nearest neighbors requested. Then, all objects that participate
in the answer set of nearest neighbors lie inside the circle with center P and
radius R.

Proof
The circle C contains at least k objects, since we select for the circle radius
the MAXDIST to the [fc/Mj^.]-th MBB. If there is no other object inside the
circle, then the k found so far are the best k matches. Any other object which

146 NEAREST NEIGHBOR SEARCH

is closer to the query point than any of the k objects above, must lie inside the
circle necessarily. n

4. Performance Evaluation
4.1 Preliminaries

The performance evaluation of the processing strategies were carried out on a
cluster of five Silicon Graphics workstations, comprising the source databases.
We used a SUN Sparcstation-4 for the primary server. The workstations were
interconnected via a lOMbit/sec Ethernet. Two types of processes were de
fined: 1) a client process running on the primary server and 2) a server process
running on each source database. The responsibility of the client process is
to pose queries to the source databases, whereas the responsibility of a server
process is to serve the queries that are directed to the corresponding source
database. The programs were coded in the C programming language under
UNIX and the interprocess communication was based on the TCP/IP stream
sockets programming interface [126].

We assume that each source database maintains an R-tree index for object
storage and manipulation. Other data structures could have been used equally
well. We generated random points in the 2-d, 3-d, 5-d and 10-d spaces. We
can distinguish two ways to partition the objects to the source databases. In the
first one, random assignment of objects to databases is used. In this approach,
almost all source databases must be accessed to answer a similarity query. In
the second one, each database is responsible for a small dataspace portion.
In this approach, few databases must be accessed during query processing.
Experiments have been conducted for the first case only, for brevity.

In order to study the performance of the methods under system load, we
assume that users are posing queries concurrently to the primary server. Also,
several values of the number of nearest neighbors requested were used and
different object sizes. For each experiment the average response time per simi
larity query was calculated. Each user poses ten queries in total, and the queries
are executed one-by-one.

4.2 Cost Model Evaluation
In a previous section a cost model has been derived for each query processing

method. In order for these cost models to be useful, they should accurately
predict the performance in real situations. Therefore, we start the experimental
evaluation of the methods by first comparing the analytical formulae to the
actual running time of each method.

In Figure 9.5 the theoretical and measured response time for queries are de
picted for each method. The parameters used for the evaluation are summarized
below: Af=100,000, NS=\ MByte/sec, m=5, d=2, 5o=1000 bytes, / = 1 . The

Distributed Query Processing Ul

w 0.25
n

0.125

0.D625

0,03125

CP-ana^iG

•— y r

j ^
r'''

y
/^'\

/ :

I 0.25

0.12S

0.0625

0.03125

(a) Concurrent Processing (CP)

,:

2PP-ana^tiC

.̂ .̂.,..,..,,.
• • "

K -

-̂';.
' •

Z^.
:••"'

i

^ • • " '

ly^

y^''-

1

' "'y'

^^-

; • • • -

;
i

i
)

• SP-rtieasurrf - o -
SP-anal/tia -><-•

I

L,

" • :

: y • . .

^"

: ^ ' " :

(b) Selective Processing (SP)

4

2

0.5

0.25

0.125

!
PRSIH

i

:
•

^.^'

i

\
Er

\

i ^

'•

'-^y^

• ^ '

^ -

/
y

xX"

Number of Nearest Neighbors (k)

(c) Two-Pliase Processing (2PP) (d) Probabilisac Processing (PRP)

Figure 9.5. Cost model evaluation (logarithmic scales).

graphs are plotted in logarithmic scales so that the differences are clearer. It
is evident that the cost models are quite accurate, since the maximum relative
error is around 20%, whereas the average relative error is around 10%.

Therefore, the cost model can be used to accurately predict the performance
of a query evaluation method. This enables to use the formulae for query
optimization purposes or for selecting the appropriate method to answer a query
according to the parameter values. More specifically, if one of the critical
parameters (e.g., the effective network speed) changes, then by consulting the
formulae the best method for the current settings can be selected. This gives
the flexibility to the query execution engine to select the evaluation method that
is expected to give the most promising results.

4.3 Experimental Results
In this subsection we illustrate representative results with respect to the real

performance of the query evaluation strategies. Figure 9.6 illustrates the re
sults when the detailed objects' description is processed and transmitted by
the databases, whereas in Figure 9.7 these costs are not included. All graphs

148 NEAREST NEIGHBOR SEARCH

CP -a--- .
SP X-

. . 2 P P . - * - :
PHP ^ , _

! : :.... \ y , . • * ' •

(a) Variable k

CP o--
SP « •

2PP -fc -
PRP - • -

^X'

,.•'''

;

i^
A

,."

f

y

A

.X

Number of Databases (m)

(c) Variable m&N

}
1

32

16

S

CP -Ej- ;
SP •>.- P

2PP -*-- /
PRP -» i - : / J

: : ^ /

^^^^^^j;::::::;^^

er /

Number of Dimensions (D)

(b) Variable d

CP -E>...
SP- -*-

2PP -^•-
PRP - * -

a - " ' :

X i; • - - - ' "

'

; ̂ ,.̂

_̂ -̂r--'-

'

\ /-
/ .

-- ./ /

Number of Bytes per Object (So)

(d) Variable S„

CP -B--
SP -K-

2PP -*r.-
PHR - * -

^'',
^ ^ y

Number ot Concurrent Users

(e) Variable number of users

Figure 9.6. Measured response time for scenario A (logarithmic scales).

are plotted in logarithmic scales. In order to investigate the performance of
the methods under system load, we assume that users are posing queries con
currently. Each user submits queries to the primary server one-by-one. The
response time illustrated in the graphs is the average response time per query,
calculated over all users. We note that the cost includes CPU time, since for
large number of users we expect this cost to be significant, because of waiting
time.

Distributed Query Processing 149

In Figure 9.6(a) we depict the response time with respect to the number
of nearest neighbors k. For this experiment we used the following parameter
values: A^=250,000, d=3, m=5,5^=1000, and / = 1 . Each database holds 50,000
objects. There are 30 users posing queries concurrently. For a small number
of k (e.g., 2,3), CP performs quite well. However, when k increases, the
performance of CP degrades. The reason is that CP demands k objects from
each activated database, resulting in high resource consumption in the CPU,
the disk, and the network. An interesting observation is that although SP does
not exploit intraquery parallelism, its performance is very good in a multiuser
system. However, PRP shows the best performance.

Figure 9.6(b) illustrates the method performance for different number of
dimensions. Each database holds 50,000 objects. The remaining parameters
have as follows: A;=50, m-5,5o=1000, and / = 1 . There are 30 concurrent users
posing queries. Evidently, all methods are affected drastically by increasing the
space dimensionaUty. The reason is that CPU and disk costs are higher, due to
the increased index processing cost in each database.

Figure 9.6(c) illustrates the method performance for different number of
databases, and different number of objects. Each database holds 50,000 objects.
The remaining parameters have as follows: fc=50, c?=10, S'o=1000, and / = 1 .
There are 30 concurrent users posing queries. PRP demonstrates the best
performance, whereas the performance of CP degrades. By increasing the
number of databases, more network traffic is anticipated, since CP requests k
objects from each database. Also, SP and 2PP have similar performance.

The impact of the object size is illustrated in Figure 9.6(d). This graph
was produced using A''=250,000, A;=50, d=\Q, f=\ and assuming that there
are 30 users posing queries. Evidently CP is affected more, and we expect
higher degradation for larger number of bytes per object. Again PRP and SP
demonstrate similar performance, and PRP performs the best.

The impact of the number of concurrent users is depicted in Figure 9.6(e).
Again, A/'=250,000, A;=50, d=3, 5o=1000, and / = 1 . When the number of users
is relatively small (e.g., < 10), the performance of SP degrades. This behavior is
explained by taking into account that SP does not exploit intraquery parallelism.
Therefore, the CPU and disk costs in each database are added, resulting in
performance degradation. CP, 2PP and PRP show similar performance. For a
large number of concurrent users, CP is affected in a negative manner, because
of bottlenecks. The other methods demonstrate similar performance, with PRP
being the most efficient method.

In Figure 9.7 we illustrate the performance of the methods for scenario B,
where the detailed object description is not transmitted by the databases before
the k best matches have been determined. It is interesting to note that in most
cases SP does not perform well, unlike scenario A. The network traffic is re
duced, and this is in favor for CP, 2PP and PRP. The only exception occurs

150 NEAREST NEIGHBOR SEARCH

CP -B--
SR x -

2PP -•—
PRp -*—

rrrSs^ ^ j K ?
•<••-

~^-

/
->iP"

• ;

' //
: //

'"'W'T
/ ^ / / •

CP s -
S P • » •

2PP -*-
PRP H»-

"
-,

- - " • • • " " t " " ^ ' - ' - •••

""''y/

/ y

.-•0/
...x-'y/

- ^ ' •

\--

Number ot Nearest Neighbors (k)

(a) Variable fc

128 256
Number of ConcuFrenl Users

(b) Variable number of users

Figure 9.7. Measured response time for scenario B (logarithmic scales).

for a large number of concurrent users (e.g.,50) where the performance of the
methods tends to converge (see Figure 9.7(b)).

5. Discussion
In this section we discuss some issues that are of major importance and can

be considered for improvements in the future:

• Care should be taken when designing the derived data. If the number of de
rived data objects is large, then the primary server may become a bottleneck
due to the increased CPU time required to process them. The reason is that
a large number of MBBs helps in better pruning during query processing
but, on the other hand, increases the required processing time. Therefore, it
would be useful to maintain a separate data structure for the derived data to
speed up processing.

• The generation of the derived data is very important. If the objects are ma
nipulated by the source databases using a data structure based on Minimum
Bounding Boxes (e.g., R-trees, R+-trees) then we can use an intermediate
tree level to extract the MBBs needed by the primary server (see for example
[58]). On the other hand, if the corresponding data structures are not MBB
based, then the MBBs should be generated artificially.

• As explained in Section 4, the MINDIST approach can lead to a not
that efficient access order of the source databases. A number of additional
reference points may help in better ordering of the source databases. For
example, a reference point may be the center of a cluster of objects. There
fore, if a specific cluster center is closer to the query point than other cluster
centers, we have a good chance that this particular cluster will contribute
the most to the final answer set of nearest neighbors. The point here is that
additional computation is required to extract the clustering information from

Distributed Query Processing 151

the source databases and, also, to exploit this information during query pro
cessing. The fact that cluster centers will improve processing performance
still needs to be justified through experimental evaluation.

• A major issue that affects the performance of all methods is the object
placement to databases. Since we allow each database to have separate
and complete control over its stored objects, insertions and deletions of
objects will create high overlaps among the dataspaces of the databases.
This effect results in accessing many source databases for a single query.
On the other hand, if we force centralized control (i.e. a single site is
responsible for insertions/deletions/reorganizations), then it is still an open
problem to derive optimal data placement techniques for similarity query
processing.

6. Summary
We have examined the problem of multidimensional similarity query pro

cessing in a distributed system. The problem is well studied for the centralized
case, and a number of very efficient methods have been proposed. However,
in a distributed database system we have to take into consideration the com
munication overhead, in addition to the CPU and I/O cost, especially when
the size of each object is not negligible. Four query evaluation strategies were
developed and studied analytically and experimentally. The efficiency of each
method depends heavily on several parameters such as the number of available
source databases, the object placement in the databases, the object volume, the
space dimensionality, the communication speed, the number of nearest neigh
bors requested, and the number of users issuing queries concurrently.

Each of the studied query evaluation strategies has its advantages and disad
vantages, and the performance varies according to the parameters. Generally,
methods 2PP and PRP are the most robust, whereas CP and SP are sensitive to
the multiprogramming degree and the database processing cost. However, they
can be used in special cases. The developed cost model can be used to predict
the performance of a query evaluation method.

7. Further Reading
In several cases, each database uses its own similarity function and therefore

specialized processing techniques are required. An interesting approach that
applies when there are multiple systems (databases) with different similarity
measures is proposed in [27, 105]. The proposed techniques can be applied
either to a distributed system or to a centraHzed one which is composed of
different modules with different similarity models.

Recently, there is a major interest in the research community for providing
efficient similarity query processing for the World Wide Web. For example, in

152 NEAREST NEIGHBOR SEARCH

[76] a relational algebra is proposed for web and multimedia data, whereas in
[39] several similarity-based strategies are studied. With the exploding growth
of the WWW, such techniques will be valuable towards effective and efficient
web search.

Epilogue

The last few decades, research in spatial and high-dimensional databases has
been very significant, and some very efficient query processing techniques have
been proposed. These efficient techniques are usually supported by sophisti
cated access methods, enabling the indexing of the underlying dataset and the
pruning of irrelevant database parts. Applications that require the manipulation
of multidimensional datasets range from simple geographic applications (e.g.,
GIS) to large multimedia databases. Although the data characteristics may
be different in each application, the proposed query processing techniques are
mainly based on the filter-refinement processing methodology. The target is,
during processing, to quickly discard irrelevant database parts in the filter step,
and perform a detailed processing of the candidate set.in the refinement step.
The filter step is supported by indexing schemes, whereas the refinement step
is performed by considering the dataset details.

Several indexing schemes have been proposed to handle multidimensional
datasets. Amongst these schemes, the R-tree family is the most influential.
Indeed, R-tree variations have been successfully applied to diverse research
fields ranging from spatial and spatiotemporal databases, to data mining.and
OLAP applications. The simplicity of the structure and the resemblance to
the ubiquitous B-tree are two of the main motivations for its use in research
prototypes and commercial systems. Efficient algorithms for range, nearest
neighbor and join queries for the R-tree have been proposed and evaluated
analytically and experimentally.

NN queries are very significant in spatial and multimedia applications. They
allow the determination of the k closest objects with respect to a query object.
The "closeness" is determined by means of a distance measure (e.g. Euclidean).
This problem has been addressed before in the context of computational geom
etry, and recently a lot of research work has been performed from the database
point of view. A naive way to process a fc-NN query is to use repetitive range
queries, by adjusting the search distance. Although simple, this approach can

153

154 NEAREST NEIGHBOR SEARCH

lead to significant performance degradation because either too few or too many
objects are returned. In order to solve this problem, efficient NN algorithms
have been proposed, which they assume the existence of an efficient indexing
scheme. Specialized methods for high-dimensional datasets have also been
proposed. The latter methods are extremely useful in multimedia applications,
where objects are transformed to a high-dimensional space, by using selected
features.

The research efforts in spatial databases paved the way for efficient query
processing in spatiotemporal databases, where time plays a critical role. Sev
eral specialized access methods have been proposed to support time in data
representation and user queries. In a database of moving objects, it is important
to track object movement to either perform trajectory analysis, or to predict
the future location of the moving objects. Query processing in such a case be
comes very difficult, because the continuous object movement must be handled
carefully.

In order to support spatial or multimedia query optimization, several cost
models have been proposed that estimate the cost of a A;-NN query. Cost esti
mation is very important, because it can be used during query optimization to
determine an efficient query execution plan. Although the derivation of cost
estimations for range queries are relatively easy, this is not true in the case of
NN queries. The main problem is the estimation of the distance from the query
point to its fc-th nearest neighbor.

The performance of a database system can be improved either by exploiting
more efficient algorithms and access methods, or by increasing the processing
power of the computer system. An example of the latter case is the exploitation
of multiple resources (disks, processors or both) towards more efficient data
processing. Research in parallel and distributed database systems studies effi
cient data storage and processing techniques, aiming at the decrease of query
response time.

In this book, we touched all the aforementioned research issues, by study
ing selected problems in NN search, by assuming a database point of view.
However, the recent literature in NN search studies several interesting research
directions in the area, such as:

• the development of efficient access methods and algorithms for NN query
processing in data streams,

the study of more efficient methods for NN search in location-aware services,

the application of NN search in clustering algorithms for data mining,

the development of accurate cost models for cost estimation of complex
queries involving nearest neighbors (e.g., closest-pair queries),

Distributed Query Processing 155

• the study of more efficient techniques for querying moving objects on fixed
spatial networks, where the objects' movement is constraint by an underlying
network,

• the application of NN search to other disciplines like similarity search in
biological data, similarity search in web usage data and similarity of moving-
object trajectories.

References

[1] D.J. Abel, B.C. Ooi, K.-L. Tan, R. Power and J.X. Yu: "Spatial Join Strategies in Dis
tributed Spatial DBMS", Proceedings of the 4th International Symposium in Spatial
Databases (SSD'95), pp.348-367, Portland, ME, 1995.

[2] N. R. Adam and A. Gangapadhyay; "Database Issues in Geographical Information Sys
tems", Kluwer Academic Publishers, 1997.

[3] D.W. Adler: "IBM DB2 Spatial Extender - Spatial Data within the DBMS", Proceedings
of the 27th International Conference on Very Large Databases (VLDB'Ol), pp.687-690,
Roma, Italy, 2001.

[4] P.K. Agarwal, L. Arge and J. Erickson: "Indexing Moving Points", Proceedings of the
19th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODSW), pp.175-186, Dallas, TX, 2000.

[5] R. Agrawal, C. Faloutsos, and A. Swami: "Efficient Similarity Search in Sequence
Databases", Proceedings of the 4th International Conference on Foundations of Data
Organization and Algorithms (FODO'93), pp.69-84, Evanston, IL, 1993.

[6] K. Alsabti, S. Ranka and V. Singh: "An Efficient Parallel Algorithm for High Dimensional
Similarity Join", Proceedings of the 11th International Parallel Processing Symposium,
pp.556-560, Orlando, FL, 1998.

[7] N. Beckmann, H.P. Kriegel and B. Seeger: "The R*-tree: an Efficient and Robust Method
for Points and Rectangles", Proceedings of the ACM International Conference on Man
agement of Data (SIGMOD'90), pp.322-331, Atlantic City, NJ, 1990.

[8] A. Belussi, E. Bertino and B. Catania: "Using Spatial Data Access Structures for Filtering
Nearest Neighbor Queries", Data and Knowledge Engineering, Vol.40, No.l, pp.1-31,
2002.

[9] A. Belussi and C. Faloutsos; "Estimating the Selectivity of Spatial Queries Using the
'Correlation' Fractal Dimension", Proceedings of the 21st International Conference on
Very Large Databases (VLDB'95), pp.299-310, Zurich, Switzerland, 1995.

[10] R. Benetis, C.S. Jensen, G. Karciauskas and S. Saltenis: "Nearest Neighbor and Reverse
Nearest Neighbor Queries for Moving Objects", Proceedings of the 6th International

157

15 8 NEAREST NEIGHBOR SEARCH

Database Engineering and Applications Symposium {IDEAS'02), pp.44-53, Edmonton,
Canada, 2002.

[11] S. Berchtold, C. Boehm, B. Braunmueller, D. A. Keim and H.-P. Kriegel: "Fast Paral
lel Similarity Search in Multimedia Databases", Proceedings of the ACM International
Conference on Management of Data (SIGMOD'97), pp.1-12, llicson, AZ, 1997.

[12] S. Berchtold, C. Boehm, D. Keim and H.-P. Kriegel: "A Cost Model for Nearest Neigh
bor Search in High-Dimensional Data Space", Proceedings of the 16th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS'97), pp.78-86,
Tucson, AZ, 1997.

[13] S. Berchtold, D. Keim and H.-P. Kriegel: "The X-tree: an Index Structure for High-
Dimensional Data", Proceedings of the 22nd International Conference on Very Large
Databases (VLDB'96), pp.28-39, Bombay, India, 1996.

[14] C. Boehm, B. BraunmuUer, F. Krebs and H.-P. Kriegel: "Epsilon Grid Order: an Algorithm
for the Similarity Join on Massive High-Dimensional Data", Proceedings of the ACM
International Conference on Management of Data (SIGMOD'Ol), Santa Barbara, CA,
2001.

[15] C. Boehm and H.-P. Kriegel: "A Cost Model and Index Architecture for the Similar
ity Join", Proceedings of the 17th IEEE International Conference on Data Engineering
(ICDE'Ol), pp.411-420, Heidelberg, Germany, 2001.

[16] T. Brinkhoff, H.-P. Kriegel and B. Seeger: "Efficient Processing of Spatial Joins Using
R-trees", Proceedings of the ACM International Conference on Management of Data
(SIGMOD'93), pp.237-246, Washington, DC, 1993.

[17] T. Brinkhoff, H.-P. Kriegel and B. Seeger: "Parallel Processing of Spatial Joins Using
R-trees", Proceedings of the 12th IEEE International Conference on Data Engineering
(ICDE'96), pp.258-265. New Orleans, LO, 1996.

[18] S. Ceri and G. Pelagatti: "Distributed Databases: Principles and Systems", McGraw-Hill,
1985,

[19] RM. Chen, E.K. Lee, G.A. Gibson, R.H. Katz and D.A. Patterson: "RAID, High-
Performance, Reliable Secondary Storage", ACM Computing Surveys, Vol.26, No.2,
pp.145-185, 1994.

[20] S. Chen and D. Towsley: "A Performance Evaluation of RAID Architectures", IEEE
Transactions on Computers, Vol.45, No.lO, pp.1116-1130, 1996.

[21] P. Ciaccia, M. Patella, and P. Zezula: "M-tree: an Efficient Access Method for Similarity
Search in Metric Spaces", Proceedings of the 23rd International Conference on Very Large
Databases, pp.426-435, Athens, Greece, 1997.

[22] A. Corral, Y. Manolopoulos, Y. Theodoridis and M. Vassilakopoulos: "Closest-Pair
Queries in Spatial Databases", Proceedings of the ACM International Conference on
Management of Data (SIGMODW), pp.189-200, Dallas, TX, 2000.

[23] A. Corral, M. Vassilakopoulos and Y. Manolopoulos:" The Impact of Buffering on Closest
Pairs Queries Using R-Trees", Proceedings of the 5th East European Conference on Ad
vances in Databases and Information Systems (ADBIS'Ol), pp.41-54, Vilnius, Lithuania,
2001.

REFERENCES 159

[24] A. Corral, Y. Manolopoulos, Y. Theodoridis and M. Vassilakopoulos: "Distance Join
Queries of Multiple Inputs in Spatial Databases", Proceedings of the 7th East European
Conference on Advances in Databases and Information Systems (ADBIS'03), pp.323-338,
Dresden, Germany, 2003.

[25] A. Corral, Y. Manolopoulos, Y. Theodoridis and M. Vassilakopoulos: "Algorithms for Pro
cessing K-closest-pair Queries in Spatial Databases". Data and Knowledge Engineering,
Vol.49, No.l, pp.67-104, 2004,

[26] D.J. DeWitt and J. Gray: "Parallel Database Systems - the Future of High Performance
Database Systems", Communications of the ACM, Vol.35, No.6, pp.85-98, 1992.

[27] R. Fagin: "Combining Fuzzy Information from Multiple Systems", Proceedings of the
15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS'96), pp.216-226, Montreal, Canada, 1996,

[28] C. Faloutsos: "Searching Multimedia Databases by Content", Kluwer Academic Publish
ers, 1996.

[29] C. Faloutsos and I. Kamel: "Beyond Uniformity and Independence - Analysis of R-
trees Using the Concept of Fractal Dimension", Proceedings of the 13th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS'94), pp.4-13,
Minneapolis, MN, 1994.

[30] C. Faloutsos and K.-I. Lin: "Fastmap: a Fast Algorithm for Indexing, Data Mining and
Visualization of Traditional and Multimedia Datasets", Proceedings of the ACM Interna
tional Conference on Management of Data (SIGMOD'95), pp. 163-174, Jan Hose, CA,
1995.

[31] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos: "Fast Subsequence Matching in
Time-Series Databases", Proceedings of the ACM International Conference on Manage
ment of Data (SIGMOD'94), pp,419-429, Minneapolis, MN, 1994.

[32] C. Faloutsos, B. Seeger, A. Traina and C. Traina: "Spatial Join Selectivity Using Power
Laws", Proceedings of the ACM International Conference on Management of Data (SIG-
MOD'OO), pp.177-188, Dallas, TX, 2000.

[33] J.H. Friedman, J.L. Bentley and R. A. Finkel: "An Algorithm for Finding the Best Matches
in Logarithmic Expected Time", ACM Transactions on Mathematical Software, Vol.3,
pp.209-226, 1977.

[34] V. Gaede and O. Guenther: "Multidimensional Access Methods", ACM Computing Sur
veys, Vol.30, No.2, pp.170-231, 1998.

[35] R.H. Gueting: "An Introduction to Spatial Database Systems", The VLDB Journal, Vol.3,
No.4, pp.357-399, 1994.

[36] A. Guttman: "R-trees: a Dynamic Index Structure for Spatial Searching", Proceedings
of the ACM International Conference on Management of Data (SIGMOD'84), pp.47-57,
Boston, MA, 1984.

[37] M. Hadjieleftheriou, G. KolUos, V.J. Tsotras and D. Gunopoulos: "Efficient Indexing of
Spatio-Temporal Objects", Proceedings of the 8th Conference on Extending Database
Technology Conference (EDBT'02), pp.251-268, Prague, Czech Republic, 2002.

160 NEAREST NEIGHBOR SEARCH

[38] J. Han, K. Koperski and N. Stefanovic: "GeoMiner: a System Prototype for Spatial Data
Mining", Proceedings of the ACM International Conference on Management of Data
(SIGMOD-97), pp.553-556, Tucson, AZ, 1997,

[39] T. H. Haveliwala, A. Gionis, D. Klein and P. Indyk: "Evaluating Strategies for Similar
ity Search on the Web", Proceedings of llth World Wide Web Conference (WWW'02),
Honolulu, Hawaii, 2002.

[40] G. Hjaltason and H. Samet: "Distance Browsing in Spatial Databases", ACM Transactions
on Database Systems, Vol.24, No.2, pp.265-318, 1999.

[41] E. Hoel and H. Samet; "Performance of Data-Parallel Spatial Operations", Proceedings
of the 20th International Conference on Very Large Databases (VLDB'94), pp,156-167,
Santiago, Chile, 1994.

[42] Y.-W. Huang, N. Jing and E. Rundesteiner: "Spatial Joins Using R-trees", Proceedings of
the 23rd International Conference on Very Large Data Bases (VLDB'97), Athens, Greece,
1997.

[43] Informix Corporation; "The Informix R-tree Index User's Guide", Informix Press, 1999.

[44] Y. Ishikawa, H. Kitagawa and T Kawashima: "Continual Neighborhood Tracking
for Moving Objects Using Adaptive Distances", Proceedings of the 6th International
Database Engineering and Applications Symposium (IDEAS'02), pp.54-63, Edmonton,
Canada, 2002.

[45] H.V. Jagadish; "Analysis of the Hilbert Curve for Representing Two-Dimensional Space",
Information Processing Letters, Vol.62, No.l, pp.17-22,1997.

[46] M. Juergens and H. Lenz: "The Ra*-tree - an Improved R-tree with Materialized Data
for Supporting Range Queries on OLAP Data", Proceedings of the Workshop on Data
Warehouse Design and OLAP Technology (DWDOT), 9th International Workshop on
Database and Expert Systems Applications (DEXA'98), pp.186-191, Vienna, Austria,
1998.

[47] D.V. Kalashnikov, S. Prabhakar, S.E. Hambrusch and W.G. Aref; "Efficient Evaluation
of Continuous Range Queries on Moving Objects, Proceedings of the 13th International
Conference on Database and Expert Systems Applications (DEXA'02), pp.731-740, Aix-
en-Provence, France, 2002.

[48] I. Kamel and C. Faloutsos; "Parallel R-trees", Proceedings of the ACM International
Conference on Management of Data (SIGMOD'92), pp.195-204, San Diego, CA, 1992.

[49] I. Kamel and C. Faloutsos; "On Packing R-trees", Proceedings of the 2nd International
Conference on Intelligence and Knowledge Management (CIKM'93), pp.490-499, Wash
ington, DC, 1993.

[50] I. Kamel and C. Faloutsos; "Hilbert R-tree - an Improved R-tree Using Fractals", Pro
ceedings of the 20th International Conference on Very Large Databases (VLDB'94),
pp.500-509, Santiago, Chile, 1994.

[51] N. Katayama and S. Satoh; "The SR-tree; an Index Structure for High-Dimensional Near
est Neighbor Queries", Proceedings ofthe ACM International Conference on Management
of Data (SIGMOD'97), pp.369-380, Tucson, AZ, 1997.

REFERENCES 161

[52] D. Knuth: "The Art of Computer Programming: Sorting and Searching", Vol.3, Addison-
Wesley, 1973.

[53] G. Kollios, D. Gunopoulos and V.J. Tsotras: "Nearest Neighbor Queries in a Mobile
Environment", Proceedings of the International Workshop on Spatio-temporal Database
Management, pp.119-134, Edinburgh, UK, 1999.

[54] G. Kollios, D. Gunopoulos and V.J. Tsotras; "On Indexing Mobile Objects", Proceed
ings of the 18th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS'99), pp.261-272, Philadelphia, PA, 1999.

[55] K. Koperski and J. Han: "Discovery of Spatial Association Rules in Geographic Infor
mation Databases", Proceedings of the 4th Symposium on Spatial Databases (SSD'95),
pp.47-66, Portland, ME, 1995.

[56] F. Korn and S. Muthujrishnan: "Influence Sets Based on Reverse Neighbor Queries", Pro
ceedings of the ACM International Conference on Management of Data (SIGMOD'OO),
pp.201-212, Dallas, TX, 2000.

[57] R.K.V. Kothuri, S. Ravada and D. Abugov: "Quadtree and R-tree Indexes in Oracle Spatial;
a Comparison Using GIS Data", Proceedings of the ACM International Conference on
Management of Data (SIGMOD'02), pp.546-557, Madison, WI, 2002.

[58] N. Koudas, C. Faloutsos and I. Kamel; "Declustering Spatial Databases on a Multi
computer Architecture", Proceedings of the 5th Conference on Extending Database Tech
nology Conference (EDBTVd), pp.592-614, Avignon, France, 1996.

[59] R. Laurini and D. Thomson: "Fundamentals of Spatial Information Systems", Academic
Press, London, 1992.

[60] I. Lazaridis, I. Porkaew and S. Mehrotra: "Dynamic Queries over Mobile Objects",
Proceedings of the 8th Conference on Extending Database Technology Conference
(EDBT'02), pp.269-286, Prague, Czech Republic, 2002.

[61] S.T. Leutenegger, J.M. Edgington and M.A. Lopez: "STR - a Simple and Efficient Al
gorithm for R-tree Packing", Proceedings of the 13th IEEE International Conference on
Data Engineering (ICDE'97), pp.497-506, Birmingham, UK, 1997.

[62] J. Liebeherr, E.R. Omiecinski and F. Akyildiz: "The Effect of Index Partitioning Schemes
on the Performance of Distributed Query Processing", IEEE Transactions on Knowledge
and Data Engineering, Vol.5, No.3, pp.510-522, 1993.

[63] K. Lin, H.V Jagadish and C. Faloutsos: "The TV-tree: an Index Structure for High Di
mensional Data", The VLDB Journal, Vol.3, No.4, pp.517-542, 1995.

[64] M.-L. Lo and C.V. Ravishankar: "Spatial Joins Using Seeded Trees", Proceedings of
the ACM International Conference on Management of Data (SIGMOD'94), pp.209-220,
Minneapolis, MN, 1994.

[65] M.-L. Lo and C.V. Ravishankar; "Spatial Hash-Joins", Proceedings of the ACM Interna
tional Conference on Management of Data (SIGMOD '96), pp.247-258, Montreal, Canada,
1996.

162 NEAREST NEIGHBOR SEARCH

[66] D. Lomet and B. Salsberg; "Access Methods for Multiversion Data", Proceedings of
the ACM International Conference on Management of Data (SIGMOD'89), pp.315-324,
Portland, OR, 1989.

[67] H. Lu, B.-C. Ooi and K.-L. Tan: "Query Processing in Parallel Relational Database
Systems", IEEE Computer Society Press, 1994.

[68] G. Lu: "Multimedia Database Management Systems", Artech House, 1999.

[69] N. Mamoulis and D. Papadias: "Slot Index Spatial Join", IEEE Transactions on Knowledge
and Data Engineering, Vol.15, No.l, 2003.

[70] N. Mamoulis and D. Papadias: "Selectivity Estimation of Complex Spatial Queries",
Proceedings of the 7th International Symposium on Spatial and Temporal Databases
(SSTDVl), pp.155-174, LA, CA, 2001.

[71] Y. Manolopoulos: "Probability Distributions for Seek Time Evaluation, Information Sci
ences, Vol.60, no.1-2, pp.29-40,1992.

[72] Y. Manolopoulos, Y. Theodoridis and V. J. Tsotras: "Advanced Database Indexing",
Kluwer Academic Publishers, 1999.

[73] Y. Manolopoulos, A. Nanopoulos, A.N. Papadopoulos and Y. Theodoridis:
"R-trees Have Grown Everywhere", Technical Report, 2003. Available at
http://www.rtreeportal.org/pubs/MNPT03.pdf

[74] Mapinfo WWW site, http://www.mapinfo.com.

[75] C. Mina: "Mapinfo SpatialWare: a Spatial Information Server for RDBMS", Proceedings
of the 24th International Conference on Very Large Databases (VLDB'98), pp.704. New
York, NY, 1998.

[76] D. Montesi, A. Trombetta and P. A. Deamley: "A Similarity Based Relational Algebra
for Web and Multimedia Data", Information Processing and Management, Vol.39, No.2,
pp.307-322, 2003.

[77] J. Moreira, C. Ribeiro and T. Abdessalem: "Query Operations for Moving Objects
Database Systems", Proceedings of the 8th ACM Symposium on Advances in Geographic
Information Systems (ACM-GIS'OO), pp. 108-114, Washington, DC, 2000.

[78] A. Nanopoulos, Y. Theodoridis and Y. Manolopoulos: "C^P - Clustering with Clos
est Pairs", Proceedings of the 27th International Conference on Very Large Databases
(VLDB'OI), pp.331-340, Roma, Italy, 2001.

[79] A. Nanopoulos, Y. Theodoridis and Y. Manolopoulos: "An Efficient and Effective Algo
rithm for Density Biased Sampling", Proceedings of the 11th ACM International Con
ference on Information and Knowledge Management (CIKM'02), pp.398-404, MacLean,
VA, 2002.

[80] E. Nardelli and G. Proietti; "Size Estimation of the Intersection Join between Two Line
Segment Datasets", Proceedings ADBIS-DASFAA, pp.229-238, Prague, Czech Republic,
2000.

[81] M.A. Nascimento and J.R.O. Silva; "Towards Historical R-trees", Proceedings of the 13th
ACM Symposium on Applied Computing (SAC'98), pp.235-240, Atlanta, GA, 1998.

REFERENCES 163

[82] M.A. Nascimento, J.R.O. Silva and Y. Theodoridis: "Evaluation of Access Structures for
Discretely Moving Points", Proceedings of the 1st International Workshop on Spatio-
temporal Databases (STDBM'99), pp.171-188, Edinburgh, UK, 1999.

[83] W. Niblack, R. Barber, W. Equitz, M. Hickner, E. Glasman, D. Petkovic and R Yanker:
"The QBIC Project: Querying Images by Content Using Color, Texture and Shape", Pro
ceedings of the SPIE Conference on Storage and Retrievalfor Image and Video Databases,
Vol.1908, pp.173-187, San Jose, CA, 1993.

[84] Oracle WWW Site, http://www.oracle.com, http://otn.oracle.com/products/spatial.

[85] J.A. Orenstein: "Spatial Query Processing in an Object Oriented Database System", Pro
ceedings of the ACM International Conference on Management of Data (SIGMOD'86),
pp.326-336, Washington, DC, 1986.

[86] T. Ozsu and P. Valduriez: "Principles of Distributed Database Systems (2nd Edition)",
Prentice-Hall, 1999.

[87] B.U. Pagel, H.W Six, H. Toben and P. Widmayer: "Towards an Analysis of Range Query
Performance in Spatial Data Structures", Proceedings of the 12thACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS'93), pp.214-221, Wash
ington DC, 1993.

[88] D. Papadias, N. Mamoulis and Y. Theodoridis: "Processing and Optimization of Multi-
Way Spatial Joins Using R-trees", Proceedings of the 18th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS'99), Philadelphia, PA,
1999.

[89] D. Papadias, R Kalnis, J. Zhang and Y. Tao: "Efficient OLAP Operations in Spadal
Data Warehouses", Proceedings of the 7th Symposium on Spatio-temporal Databases
(SSTD'Ol), pp.443-459, Redondo Beach, CA, 2001.

[90] D. Papadias, Y. Tao, P. Kanlis and J. Zhang: "Indexing Spatio-Temporal Data Ware
houses", Proceedings of the 18th IEEE International Conference on Data Engineering
{ICDE'02), pp.166-175, San Jose, CA, 2002.

[91] D. Papadias, J. Zhang, N. Mamoulis and Y. Tao: "Query Processing in Spatial Network
Databases", Proceedings of the 29th International Conference on Very Large Data Bases
(VLDB'03), pp.802-813, Berlin, Germany, 2003.

[92] A.N. Papadopoulos and Y. Manolopoulos: "Parallel Processing of Nearest Neighbor
Queries in Declustered Spatial Data", Proceedings of the 4th ACM Workshop on Ad
vances on Geographic Information Systems (ACM-GIS'96), pp.37-43, Rockville, MD,
1996.

[93] A.N. Papadopoulos and Y Manolopoulos: "Performance of Nearest Neighbor Queries in
R-trees", Proceedings of the 4th International Conference on Database Theory (ICDT'97),
pp.394-408, Delphi, Greece, 1997.

[94] A.N. Papadopoulos, Y Manolopoulos: "Nearest Neighbor Queries in Shared-Nothing
Environments", Geoinformatica, Vol.1, No.4, pp.369-392, 1997.

164 NEAREST NEIGHBOR SEARCH

[95] A.N. Papadopoulos, Y. Manolopoulos: "Similarity Query Processing using Disk Ar
rays", Proceedings of the ACM International Conference on Management of Data (SIG-
MOD'98), pp.225-236, Seattle, WA, 1998.

[96] A.N. Papadopoulos, Y. Manolopoulos: "Distributed Processing of Similarity Queries",
Distributed and Parallel Databases, Vol.9, No.l, pp.67-92, 2001.

[97] A.N. Papadopoulos, P. Rigaux, M. SchoU: "A Performance Evaluation of Spatial Join Pro
cessing Strategies", Proceedings of the 6th International Symposium on Spatial Databases
(SSD'99), pp.286-307, Hong-Kong, China, 1999.

[98] J. Paredaens: "Spatial Databases, the Final Frontier", Proceedings of the 5th International
Conference on Database Theory (ICDT'95), pp.14-32, Prague, Czech Republic, 1995.

[99] D.A. Patterson, G. Gibson and R.H. Katz: "A Case for Redundant Arrays of Inexpensive
Disks (RAID)", Proceedings of the ACM International Conference on Management of
Data (SIGMOD-88), pp. 109-116, Chicago, IL, 1988.

[100] D. Pfoser, C.S. Jensen and Y. Theodoridis: "Novel Approaches to the Indexing of Moving
Object Trajectories", Proceedings of the 26th International Conference on Very Large
Databases (VLDB'OO), pp.395-406, 2000.

[101] P.P. Preparata and M. I. Samos; "Computational Geometry", Springer-Verlag, 1985.

[102] G. Proietti and C. Faloutsos: "Analysis of Range Queries and Self-Spatial Join Queries
on Real Region Datasets Stored using an R-tree", IEEE Transactions on Knowledge and
Data Engineering, Vol.12, No.5, pp.751-762, 2000.

[103] K. Raptopoulou, A. N. Papadopoulos and Y. Manolopoulos: "Fast Nearest Neighbor
Query Processing in Moving-Object Databases", Geoinformatica, Vol.7, No.2, pp. 113-
137, 2003.

[104] P. Rigaux, M. Scholl and A. Voisard: "Spatial Databases with Applications to GIS',
Morgan Kaufmann, 2002.

[105] M. T. Roth, M. Arya, L. M. Haas, M. J. Carey, W. F. Cody, R. Fagin, R M. Schwarz, J.
Thomas II and E. L. Wimmers: 'The Garlic Project", Proceedings of the ACM Interna
tional Conference on Management of Data (SIGMOD'96), Montreal, Canada, 1996.

[106] N. Roussopoulos, S. Kelley and F. Vincent: "Nearest Neighbor Queries", Proceedings
of the ACM International Conference on Management of Data (SIGMOD'95), pp.71-79,
San Jose, CA, 1995.

[107] N. Roussopoulos and D. Leifker: "Direct Spatial Search on Pictorial Databases Using
Packed R-trees", Proceedings of the ACM International Conference on Management of
Data (SIGMOD'85), pp.17-31, Austin, TX, 1985.

[108] C. Ruemmler and J. Wilkes: "An Introduction to Disk Drive Modeling", IEEE Computer,
Vol.27, No.3, pp. 17-28, 1994.

[109] Y. Sakurai, M. Yoshikawa, A. Uemura and H. Kojima: "The A-tree: an Index Structure
for High-Dimensional Spaces Using Relative Approximation", Proceedings of the 26th
International Conference on Very Large Databases (VLDB'OO), pp.516-526, Cairo, Egypt,
2000.

REFERENCES 165

[110] S. Saltenis, C.S. Jensen, S. Leutenegger and M. Lopez: "Indexing the Positions of Con
tinuously Moving Objects", Proceedings of the ACM International Conference on Man
agement of Data (SIGMOD'OO), pp.331-342, Santa Barbara, CA, 2000.

[HI] H. Samet: "The Design and Analysis of Spatial Data Structures", Addison-Wesley, Read
ing MA, 1990.

[112] H. Samet; "Applications of Spatial Data Structures", Addison-Wesley, Reading MA,
1990.

[113] B. Seeger and RA. Larson: "Multi-Disk B-trees", Proceedings of the ACM International
Conference on Management of Data (SIGMOD'91), pp.436-445, Denver, CO, 1991.

[114] T. Seidl and H.-P. Kriegel: "Optimal Multi-Step k-Nearest Neighbor Search", Proceedings
of the ACM International Conference on Management of Data (SIGMOD'88), pp. 154-
165, Seattle, WA, 1998.

[115] T. Sellis, N. Roussopoulos and C. Faloutsos: "The R"'"-tree - a Dynamic Index for Mul
tidimensional Objects", Proceedings of the 13th International Conference on Very Large
Databases (VLDB'87), pp.507-518, Brighton, UK, 1987.

[116] J. C. Shafer and R. Agrawal: "Parallel Algorithms for High-dimensional Proximity Joins
for Data Mining Applications", Proceedings of the 23rd International Conference on Very
Large Data Bases (VLDB'97), pp. 176-185, Athens, Greece, 1997.

[117] C. Shahabi, M.R. Kolahdouzan and M. Sharifzadeh: "A Road Network Embedding Tech
nique for K-Nearest Neighbor Search in Moving Object Databases", Proceedings of the
10th ACM Workshop on Advances on Geographic Information Systems (ACM-GIS'02),
McLean, VA, 2002.

[118] S. Shekhar, S. Ravada, V. Kumar, D. Chubb and G. Turner: "Declustering and Load-
Balancing Methods for Parallelizing Geographical Information Systems", IEEE Transac
tions on Knowledge and Data Engineering, Vol.10, No.4, pp.632-655, 1998.

[119] S. Shekhar and S. Chawla: "Spatial Databases: A Tour", Prentice Hall, 2003.

[120] S. Shekhar and J.S. Yoo: "Processing In-Route Nearest Neighbor Queries: a Comparison
of Alternative Approaches", Proceedings of the 11th ACM Workshop on Advances on
Geographic Information Systems (ACM-GIS'03), New Orleans, LO, 2003.

[121] K. Shim, R. Srikant and R. Agrawal: "High-Dimensional Similarity Joins", Proceedings
of the 13th IEEE International Conference on Data Engineering (ICDE'97), Birmingham,
UK, 1997.

[122] A.P. Sistla, O. Wolfson, S. Chamberlain and S. Dao: "Modeling and Querying Moving
Objects", Proceedings of the 13th IEEE International Conference on Data Engineering
(ICDE'97), pp.422-432, Birmingham, UK, 1997.

[123] Z. Song and N. Roussopoulos: "K-NN Search for Moving Query Point", Proceedings of
the 7th Symposium on Spatio-temporal Databases (SSTD'Ol), pp.79-96, Redondo Beach,
CA,2001.

[124] Z. Song and N. Roussopoulos: "Hashing Moving Objects", Proceedings of the 2nd Inter
national Conference on Mobile Data Management (MDM'Ol), pp.161-172. Hong Kong,
China, 2001.

166 NEAREST NEIGHBOR SEARCH

[125] I. Stanoi, D. Agrawal and A. Abbadi; "Reverse Nearest Neighbor Queries for Dynamic
Datasets", Proceedings of the 5th Workshop on Research Issues in Data Mining and
Knowledge Discovery (DMKD'OO), pp.44-53, Dallas, TX, 2000.

[126] W.R. Stevens: "UNIX Network Programming", Prentice-Hall, 1990.

[127] M. Stonebraker, T. Sellis and E. Hanson: "An Analysis of Rule Indexing Implementations
in Data Base Systems", Proceedings of the 1st Conference on Expert Database Systems,
pp.465-476, Charleston, SC, 1986.

[128] M. Stonebraker, J. Frew, K. Gardels and J, Meredith: "The Sequoia 2000 Storage Bench
mark", Proceedings of the ACM International Conference on Management of Data (SIG-
MOD'93), pp.2-11, Washington, DC, 1993.

[129] Y. Tao and D. Papadias: "MV3R-tree - a Spatio-Temporal Access Method for Timestamp
and Interval Queries", Proceedings of the 27th International Conference on Very Large
Databases (VLDB'OI), pp.431-440, 2001.

[130] Y. Tao and D. Papadias: 'Time-Parameterized Queries in Spatio-Temporal Databases"
Proceedings of the ACM International Conference on Management of Data (SIG-
MOD-02), pp.334-345, Madison, WI, 2002.

[131] Y. Tao, D. Papadias and Q. Shen: "Continuous Nearest Neighbor Search", Proceedings
of the 28th International Conference on Very Large Databases (VLDB'02), pp,287-298,
2002.

[132] Y Tao, D. Papadias and J. Zhang: "Aggregate Processing of Planar Points", Proceedings
of the 8th Conference on Extending Database Technology Conference (EDBT'02), pp.682-
700, Prague, Czech Republic, 2002.

[133] Y Tao, J. Zhang, D. Papadias and N. Mamoulis: " An Efficient Cost Model for Opti
mization of Nearest Neighbor Search in Low and Medium Dimensional Spaces", IEEE
Transactions on Knowledge and Data Engineering, 2004.

[134] Y. Tao, D. Papadias and X. Lian: "Reverse kNN Search in Arbitrary Dimensionality",
Proceedings of the 30th International Conference on Very Large Databases (VLDB'04),
Toronto, Canada, 2004.

[135] Y. Theodoridis and T. Sellis: "A Model for the Prediction of R-tree Performance",
Proceedings of the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database System.^ (PODS'96), pp.161-171, Montreal, Canada, 1996.

[136] Y. Theodoridis, T. Sellis, A.N. Papadopoulos and Y. Manolopoulos: "Specifications for
Efficient Indexing in Spatiotemporal Databases", Proceedings of the 10th IEEE Confer
ence in Scientific and Statistical Databases (SSDBM'98), pp. 123-132, Capri, Italy, 1998.

[137] Y Theodoridis, M. Vazirgiannis and T. Sellis: "Spatio-temporal Indexing for Large Mul
timedia Applications", Proceedings of the 3rd IEEE International Conference on Multi
media Computing and Systems (ICMCS'96), pp.441-448, Hiroshima, Japan, 1996.

[138] TIGER/Line Files, 1994 Technical Documentation /prepared by the Bureau of the Census,
Washington, DC, 1994.

REFERENCES 167

[139] C. Traina, A. Traina, B. Seeger and C. Faloutsos; "Slim-trees: High Performance Metric
Trees Minimizing Overlap Between Nodes", Proceedings of the 7th International Con
ference on Extending Database Technology (EDBT'OO), pp.51-65, Konstanz, Germany,
2000.

[140] C. Traina, A. Traina, B. Seeger and C. Faloutsos: "Fast Indexing and Visualization of Met
ric Data Sets using Slim-Trees", IEEE Transactions on Knowledge and Data Engineering,
Vol.14, No.2, pp.244-260, 2002.

[141] P. Trianafillou and C. Faloutsos: " Overlay Striping and Optimal Parallel I/O for Modem
Applications", Parallel Computing, Vol.24, No.l, pp.21-43, 1998.

[142] D. White and R. Jain: "Similarity Indexing with the SS-tree", Proceedings of the 12th IEEE
International Conference on Data Engineering (ICDE'96), pp.516-523, New Orleans, LO,
1996.

[143] R. Williams et al.: "R': an Overview of the Architecture", IBM Research Report, San
Jose, Calif., RJ3325, 1981.

[144] O. Wolfson, B. Xu and S. Chamberlain: "Location Prediction and Queries for Track
ing Moving Objects", Proceedings of the I6th IEEE International Conference on Data
Engineering (ICDE'OO), pp.687-688, San Diego, CA, 2000.

[145] O. Wolfson, B. Xu, S. Chamberlain and L. Jiang: "Moving Objects Databases: Issues
and Solutions", Proceedings of the 10th IEEE Conference in Scientific and Statistical
Databases (SSDBM'98), pp.111-122, Capri, Italy, 1998.

[146] X. Xu, J. Han and W. Lu: "RT-tree: an Improved R-tree Index Structure for Spatio-
Temporal Databases", Proceedings of the Symposium on Spatial Data Handling (SDH'90),
pp.1040-1049,1990.

[147] P. Zezula, P. Savino, F. Rabitti, G. Amato, P. Ciaccia: "Processing M-trees with Parallel
Resources", Proceedings of the 8th International Workshop on Research Issues in Data
Engineering (RIDE'98), pp. 147-154, 1998.

[148] B. Zheng and D. Lee: "Semantic Caching in Location-Dependent Query Processing",
Proceedings of the 7th Symposium on Spatio-temporal Databases (SSTD'Ol), pp.97-116,
Redondo Beach, CA, 2001.

[149] Y. Zhou, S. Shekhar and M. Coyle: "Disk Allocation Methods for ParalleHzing Grid Files",
Proceedings of the 10th IEEE International Conference on Data Engineering (ICDE'94),
pp.243-252, Houston, TX, 1994.

Index

A-tree, 20

B+-tree, 13, 16, 77

candidate set, 7, 153
continuous queries, 50

data mining, 19, 153
data warehouse, 19,128
DFT, 9, 32
dimensionality curse, 9, 20
disk array, 76, 87, 98, 107
disk characteristics, 100
distributed database system, 75
distribution transparency, 76

edit distance, 28
ethemet, 118, 146
Euclidean distance, 5,25,26, 32, 38,41, 54, 60,

128,153

false alarms, 7, 27
false dismissals, 32, 117
FastMap, 28
FCFS, 99
filter-refinement, 7, 32, 153
fractal dimension, 38, 45

correlation, 41
Hausdorff, 42

fragmentation, 83
horizontal, 83
vertical, 83

GEMINI, 8

Hilbert packed R-tree, 18,44, 117
HilbertR-tree, 16,125

incremental, 35, 99
independent R-trees, 77

k-d-tree, 29

Lp norm, 26

M-tree, 28,108
Manhattan distance, 25
Mapinfo SpatialWare, 10
MAXDIST, 65, 89,113,145
metric space, 28
MD>fDIST, 29,38,45,63, 88,105,113,144,150
minimimi bounding rectangle (MBR), 7
MINMAXDIST, 29, 39, 88, 113
multimedia applications, 31
multiplexed R-tree, 79

network of workstations, 76, 82, 109, 127, 142

object approximation, 7
Oracle, 10

packed R-tree, 18
parallel architecture, 76,127
parallel architectures, 81
parallel database system, 75, 109
parallel performance measmes, 80
parallelism

CPU, 76
1/0,76

Poisson distribution, 100
proximity index, 80
pruning rules, 30, 54, 65, 88, 106,150

query execution plan, 5, 37, 154

IBM DB2, 10
IBM Informix, 10

R*-tree, 16
R+-tree, 15

169

170 NEAREST NEIGHBOR SEARCH

R-tree, 8, 13, 77
dynamic variants, 15
static variants, 17

R-tree characteristics, 14
RAID, 76
ranking, 35
regression. 111, 125
round-robin, 77, 80, 82, 110

seeds, 14
sequential scanning, 6, 102
Sequoia2000, 98,118
Slim-tree, 28
space-filling curves, 16, 82, 110
spatial data types, 3

line segment, 3, 53
point, 3
polygon, 4
rectangle, 4

spatial database, xvii, 3, 11, 154

spatial queries, 4
closest-pairs, 5
directional, 4
distance, 4
join, 5
nearest neighbors, 5
range query, 5
topological, 4

split points, 52
split policies, 14
STR packed R-tree, 18
super nodes, 78

TIGER, 19,98, 118
time-parameterized queries, 51
TPR-tree, 19, 50, 62
TV-tree, 9, 20

X-tree, 9, 20

